Vol. 57 (2021), Issue 1, p. 29-36

https://doi.org/10.5281/zenodo.4455852

Синтез и электрохимическое поведение в редокс-реакции с литием K,Na-V-оксидных соединений

Апостолова Р.Д., Шембель Е.М.


Abstract

УДК 544.643-621.357

 

Гетерогенные ванадий-оксидные соединения (бронзы, ванадаты) привлекают разработчиков литиевых батарей повышенной структурной стойкостью в редокс-реакции с литием по сравнению со стойкостью оксида V2O5 – традиционного интеркаляционного электродного материала для Li-батарей. Структурная стабилизация способствует улучшению разрядных характеристик Li-батарей на основе калийсодержащих и натрийсодержащих оксидных соединений ванадия. Исследован совместный эффект ионов калия и натрия на электрохимическое преобразование ванадий-оксидных соединений в электродах для использования в Li-аккумуляторе. По данным рентгенофазового анализа, на аноде получены дисперсные осадки, зависящие от состава электролита. Из растворов метаванадата калия в присутствии ионов натрия осадки содержат ванадаты Na5V12O32 и KV5O13, из растворов ванадилсульфата с ионами калия и натрия образуются ванадаты Na10V24O64 и KV5O13. Оценка электрохимических параметров синтезированного материала свидетельствует о возможности его использования в Li-батареях. Эффективность циклирования ванадатов, полученных из растворов ванадил-сульфата, в тонкослойных безбалластных электродах литиевого аккумулятора превышает таковую V2O5 оксида. Положительный совместный калий-натриевый эффект может быть полезным для реализации тонкослойных литиевых аккумуляторов на основе электрохимически синтезированного Na,K-V-оксидного соединения, полученного из раствора ванадилсульфата.

 

Ключевые слова: литиевый аккумулятор, (K,Na-ванадаты), электрохимический синтез, разрядная емкость, растворы метаванадата и ванадилсульфата.

 

 

Heterogeneous vanadium-oxide compounds (bronzes, vanadates) attract the attention of developers of lithium batteries due to an increased structural stability of those oxides in the redox reaction with lithium as compared with the resistance of V2O5 oxide, a traditional intercalation electrode material for Li-batteries. Structural stabilization improves the discharge characteristics of Li-batteries based on potassium-containing and sodium-containing vanadium oxide compounds. In this work, the combined effect of potassium and sodium ions on the electrochemical transformation of vanadium oxide compounds in electrodes for usage in a Li-battery was investigated. According to the data of the X-ray phase analysis, dispersed deposits were obtained at the anode, depending on the composition of the electrolyte. From the solutions of potassium metavanadate in the presence of sodium ions, the deposits contain Na5V12O32 and KV5O13 vanadates; from the solutions of vanadyl sulfate in the presence of potassium and sodium ions, vanadates Na10V24O64 and KV5O13 are formed. The evaluation of the electrochemical parameters of the synthesized material indicates the possibility of its use in Li-batteries. The cycling efficiency of vanadates obtained from vanadyl sulfate solutions in thin-layer ballastless electrodes of a lithium battery exceeds that of V2O5 oxide. The positive combined potassium-sodium effect can be useful for the implementation of thin-layer lithium batteries based on electrochemically synthesized K,Na (V-oxide compounds) obtained from a solution of vanadyl sulfate.

 

Keywords: lithium battery, K,Na-vanadates, electrochemical synthesis, discharge capacity, metavanadate and vanadyl sulfate electrolytes.

 


 

 
 

Download full-text PDF. 386 downloads

Web-Design Web-Development SEO - eJoom Software. All rights reserved.