ИНГИБИРОВАНИЕ БОРОГЛЮКОНАТОМ КАЛЬЦИЯ КОРРОЗИИ СТАЛЕЙ В ЭЛЕКТРОЛИТАХ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ РАЗМЕРНОЙ ОБРАБОТКИ

Институт прикладной физики АНМ, ул. Академией, 5, г. Кишинев, MD–2028, Республика Молдова

Работ, рассматривающих повышение коррозионной стойкости деталей и оборудования при электрохимическом формообразовании с использованием в качестве электролита агрессивных растворов хлористого или азотнокислого натрия, немного [1–5]. В ряде случаев ингибирующим компонентом электролита служит йодистый калий или сегнетова соль [1]. Комбинированная добавка $100~\text{г/л}~\text{NaNO}_2~\text{u}~1~\text{г/л}$ бензоата натрия уменьшает скорость коррозии низкоуглеродистой стали в водном растворе хлористого натрия примерно в 80~раз [2]. Однако при этом концентрация экологически опасного компонента NaNO_2 очень высока. Добавка в 10%~раствор хлористого натрия $\text{KNO}_2~\text{u}~\text{NaNO}_2$ снижает скорость коррозии углеродистых и аустенитных сталей при электрохимической размерной обработке (ЭХРО), в то время как NaOH, уменьшая коррозию, заметно ухудшает качественные показатели при ЭХРО этих сталей [3]. Глюконат натрия или калия, щавелевая кислота или оксалат натрия препятствуют образованию при ЭХРО в NaCI на обрабатываемой поверхности или инструменте нерастворимого осадка $\text{Fe}(\text{OH})_3$, уменьшая тем самым возможность возникновения локальной коррозии [4].

Известен также электролит, содержащий натрий азотнокислый, натрий азотистокислый и керосин осветительный [5]. Его недостатком являются сравнительно малое повышение коррозионной стойкости металла обрабатываемых деталей и оборудования при повышенных энергозатратах из-за введения в электролит керосина осветительного, а также наличие значительного количества токсичного NaNO₂. Более того, наличие в электролите керосина и выделение водорода в процессе обработки создают в камере электрохимического станка взрывоопасную газовую смесь, что ухудшает условия труда.

Для электрохимического маркирования нержавеющих сталей используют электролит на основе водного раствора $NaNO_2$, $NaNO_3$, триэтаноламина, железосинеродистого калия [6]. Недостатком его является высокое содержание токсичного компонента — $NaNO_2$, что затрудняет эксплуатацию оборудования и ухудшает условия труда. При этом электролит не обеспечивает полной защиты обрабатываемой поверхности и оборудования. Более того, и электролит [5], и электролит [6] не дают возможности защитить обрабатываемые детали при межоперационном хранении.

За счет введения в электролит на основе NaCI или NaNO₃ комбинированной добавки, состоящей из азотистокислого натрия и уротропина, в результате синергического взаимодействия компонентов ингибитора удается полностью подавить коррозию обрабатываемых деталей (как в процессе ЭХРО, так и при межоперационном хранении) и оборудования [7]. При этом производительность процесса анодной обработки снижается незначительно. Однако недостатком этой композиции является наличие в ней достаточно токсичного нитрита натрия.

Цель работы – нахождение экологически безопасного ингибитора, снижающего коррозионные потери при ЭХРО и практически не меняющего скорость анодного растворения сталей.

Методика

После предварительных экспериментов (как и в случае защиты углеродистых сталей в природных водах [8, 9]) в качестве добавки в электролит был выбран бороглюконат кальция. Это экологически безопасное вещество, а растворяемость его в водных электролитах значительно больше, чем у глюконата кальция. В воде различного солесодержания он даже при небольших концентрациях достаточно хорошо защищает сталь как при естественной, так и принудительной конвекции раствора. Далее проводили оптимизацию состава ингибирующей композиции.

Таблица 1. Химический состав обрабатываемых сталей

Сталь	Содержание элементов, вес.%									
	С	Mn	Si	Cr	Ni	Mo	V	Zr	Nb	Fe
Ст.10	0,07-0,14	0,35-	0,17-	≤0,15	≤0,25	-	-	-	-	основа
		0,65	0,37							
Ст.45Х	0,41-049	0,50-	0,17-	0,8-	≤0,30	-	-	-	-	- " —
		0,80	0,37	1,1						
30XH2M	0,27-0,34	0,30-	0,17-	0,60-	2,00-	0,20-	0,10-0,18	-	-	- " —
ΦА		0,60	0,37	0,90	2,40	0,30				
3Х3М3Ф	0,27-0,34	0,30-	0,17-	~3,0	-	~3,0	~1,0	~1,0	~1,0	- " —
БЦА		0,60	0,37							

Исследования проводили по методике, близкой к [7]. Коррозионные испытания осуществляли при полном погружении образцов в раствор на одинаковую глубину при доступе воздуха. Образцы размером 50x25x3 мм изготовляли из сталей, химический состав которых приведен в табл. 1. Боковую поверхность образцов изолировали лаком. Исходная шероховатость поверхности соответствовала обработке шлифованием. Перед опытом образцы тщательно обезжиривали венской известью, промывали дистиллированной водой и высушивали фильтровальной бумагой. После испытаний их вынимали, высушивали вначале на воздухе, а затем в эксикаторе над слоем прокаленного CaCI₂. Удаление продуктов коррозии со стальных образцов проводили в 0,5 M растворе соляной кислоты с добавлением 0,5% уротропина. Потери от коррозии регистрировали гравиметрически. Время испытаний составило 120 часов. Температура поддерживалась равной $20\pm0,5^{\circ}$ С. Эффект действия ингибитора оценивали по критерию степени защиты, определяемому по формуле $Z = (k-k_1)/k$, где k_1 и k – скорости коррозии металла с применением ингибитора и без него. Степень защиты характеризует полноту подавления коррозии. Для оценки эффективности ингибиторов использовали и коэффициент торможения $\gamma = k/k_1$, показывающий, во сколько раз снижается скорость коррозии при действии ингибитора. Оценку результатов коррозионных испытаний проводили по площади поражения (%).

Энергетические параметры процесса ЭХРО, как и в [7], определяли на специально сконструированной настольной установке, имитирующей прошивочные операции. Применялся цилиндрический электрод-инструмент с наружным диаметром рабочего торца 10 и диаметром отверстия (для подачи электролита) 5 мм. Межэлектродный зазор устанавливали равным 0,2 мм, расход электролита — до 10 л/мин. Боковая поверхность изолирована лаком.

Результаты экспериментов и их обсуждение

Влияние концентрации компонентов электролита, условий испытаний на площадь коррозионных поражений, скорость коррозии, коэффициент торможения, степень коррозионной защиты и параметры ЭХРО приведены в табл. 2–6.

Из приведенных в таблицах данных виден положительный эффект введения бороглюконата кальция в электролит для электрохимического формообразования. Уже при концентрации добавки 1,0 г/л в самый агрессивный электролит, содержащий 150 г/л хлористого натрия, площадь коррозионных поражений для стали 30ХН2МФА снижается с 88 до 10%, а для стали 3ХЗМЗФБЦА – с 77 до 8% (табл. 2). При этом коэффициент торможения у соответственно равен 7,54 и 7,7, а степень защиты достигает значений 85 и 86,2% соответственно (табл. 3), что немного ниже, чем при использовании оптимального состава многокомпонентных электролитов [5, 6]. Снижение концентрации бороглюконата кальция менее 1,0 г/л нежелательно, так как практически не дает положительного эффекта, хотя в водопроводной воде уже при концентрации ингибитора, равной 0,3 г/л, коррозионные потери уменьшаются почти в 5 раз [8].

Хотя электролит, содержащий 150 г/л азотнокислого натрия, менее агрессивен, чем электролит на основе хлористого натрия, площадь коррозионных поражений малоуглеродистой конструкционной стали Ст.10 составляет 100% при скорости коррозии 2,6 г/($\rm M^2$ -сут) (табл. 4 и 5). Легирование хромом (сталь 45X) приводит к снижению площади коррозионных поражений до 85%, а скорости коррозии – до 2,48 г/($\rm M^2$ -сут).

Таблица 2. Влияние ингибиторов на площадь коррозионных поражений (S,%) в растворе 150 г/л NaCI $(\tau = 120 \text{ час})$

Состав коррозионных сред, г/л	Сталь 30ХН2МФА	Сталь ЗХЗМЗФБЦА
NaCI 150	88	77
NaNO ₃ 150 + керосин осветительный 15	14	13
+ NaNO ₂ 10		
$NaNO_3 10 + NaNO_2 50 + три-этаноламин 6$	6	6
+ железосинеродистый калий 25		
NaCI 150 + бороглюконат кальция:		
1	10	8
2	7	6
5	5	3,5
10	1,5	1,0
15	к.о.*	K.O.
20	K.O.	K.O.
30	K.O.	K.O.
40	K.O.	K.O.
50	K.O.	K.O.

^{*} к.о. – коррозия отсутствует.

Таблица 3. Влияние ингибиторов на процесс коррозии сталей в растворе $150 \, \text{г/л} \, \text{NaCI} \, (\tau = 120 \, \text{час})^3$

Таолица 3. Влияние ингиоиторов на процесс корр	озии сталеи в рас	творетзо г/л нас	
Состав коррозионных сред, г/л	Скорость кор-	Степень защи-	Коэффици-
	розии	ты Z,%	ент тормо-
	k ,г/(M^2 ·сут)		жения ү
NaCI 150	3,77/3,5	-	-
$NaNO_3$ 150 + $NaNO_2$ 10 + керосин осветитель-	1,45/1,2	61,5/66,4	2,6/2,92
ный 15			
$NaNO_3 10 + NaNO_2 50 + триэтаноламин 6 + же-$	0,1/0,08	91,3/92,5	37,7/43,75
лезосинеродистый калий 25			
NaCI 150 + бороглюконат кальция:			
1	0,5/0,45	85,0/86,2	7,54/7,77
2	0,4/0,36	88,1/89,3	9,43/9,72
5	0,15/0,12	91,5/93,0	25,13/29,17
10	0,03/0,01 0/0	98,0/99,0	125,7/350,0
15	0/0	100/100	-
20	0/0	100/100	-
30	0/0	100/100	-
40	0/0	100/100	-
50		100/100	

 $^{^{\}circ}$ В числителе показаны значения для стали $30XH2M\Phi A$, а в знаменателе – для стали $3X3M3\Phi E UA$.

С добавлением в электролит на основе хлористого натрия ингибитора до концентрации 2-5 г/л процесс подавления коррозии усиливается и площадь коррозионных поражений у легированных сталей снижается до 3,5-5,0%. При этом коэффициент торможения увеличивается до 25-29, а степень защиты повышается до 91,5-93,0% (табл.2 и 3). А при концентрации бороглюконата кальция, равной 10 г/л, коррозионные потери снижаются в 126-350 раз и степень защиты достигает значений 98-99%. Наконец, при концентрации добавки 15-50 г/л коррозионный процесс на легированных сталях полностью прекращается. Выше 50 г/л повысить концентрацию добавки не представляется возможным из-за ее недостаточной растворимости.

Таблица 4. Влияние ингибиторов на площадь коррозионных поражений (S, %) сталей в растворе $150 \, г/л \, NaNO_3 \, (\tau = 120 \, vac)$

Состав коррозионной среды, г/л	Ст.10	Ст.45Х
NaNO ₃ 150	100	85
$NaNO_3 150 + NaNO_2 10 + керосин освети-тельный 15$	20	16
N NO 10 N NO 50	10	1.5
$NaNO_3 10 + NaNO_2 50 + триэтаноламин 6$	18	15
+ железосинеродистый калий 25		
$NaNO_3$ 150 + бороглюконат кальция:		
1	16	15
2	12	10
5	8	6
10	4	3
15	2	0,5
20	отс.	отс.
30	отс.	отс.
40	отс.	отс.
50	отс.	отс.

Таблица 5. Влияние ингибиторов на процесс коррозии сталей в растворе $150 \ {
m г/л} \ {
m NaNO_3} \ (au=120 \ {
m час})^*$

Состав коррозионной среды, г/л	Скорость корро-	Степень за-	Коэффициент
	зии <i>k</i> ,	щиты Z , %	торможения ү
	$\Gamma/(M^2 \cdot cyT)$		
NaNO ₃ 150	2,6/2,48	-	-
NaNO 150 + NaNO ₂ 10 + керосин освети-	0,42/0,45	83,8/81,8	6,19/5,51
тельный 15			
$NaNO_3 10 + NaNO_2 50 + триэта-ноламин 6$	0,33/0,35	87,3/85,9	7,88/7,09
+ железосинеродистый калий 25			
NaNO ₃ 150 + бороглюконат			
кальция:			
1	0,47/0,43	80,1/79,7	5,53/5,77
2	0,35/0,32	86,2/87,0	7,43/7,75
5	0,20/0,18	90,0/91,2	13,0/13,78
10	0,12/0,10	95,1/96,0	21,67/24,8
15	0,06/0,04	98,2/99,0	43,33/62,0
20	0/0	100/100	-
30	0/0	100/100	-
40	0/0	100/100	-
50	0/0	100/100	-

 $^{^{*}}B$ числителе показаны значения для стали 10, в знаменателе – для стали 45X.

Введение в электролит только 1,0 г/л бороглюконата кальция снижает площадь коррозионных поражений сталей до значений, вполне сопоставимых с результатом использования многокомпонентных ингибиторов [5, 6]. При этом коррозионные потери уменьшаются почти в шесть раз, а степень защиты достигает 80%. С увеличением концентрации добавки бороглюконата кальция до 2–15 г/л коррозионные потери уменьшаются в 43–62 раза, а степень защиты сталей повышается до 86–99%. При концентрации ингибитора 20–50 г/л коррозия сталей полностью прекращается.

Результаты экспериментов показывают, что оптимальная концентрация бороглюконата кальция зависит как от природы анионов (${\rm Cl}^-$ и ${\rm NO}_3^-$), так и от степени легирования использованных сталей.

Введение ингибитора в электролиты для электрохимического формообразования сдвигает стационарный потенциал сталей в положительную сторону тем больше, чем больше концентрация добавки. Притом потенциал изменяется очень быстро, что, скорее всего, свидетельствует об адсорбции органического ингибитора на активной поверхности, что вызывает торможение коррозионного

процесса. Как и при коррозии в водопроводной воде [9], происходит комплексообразование с участием ингибитора и ионов железа. При наличии нескольких гидроксильных групп и переменной валентности ионов железа возможно образование различных промежуточных комплексов на поверхности корродируемого металла, отличающихся составом, растворимостью и характером влияния на процесс перехода металла в раствор. При этом формируемая на поверхности пленка с их участием эффективнее предохраняет металл от коррозии и стабилизирует процесс ионизации металла на более низкой скорости. Именно наличием этой пленки объясняются наблюдаемое снижение скорости анодного растворения и повышение энергозатрат при добавлении в электролит ингибитора (табл. 6).

Таблица 6. Влияние условий ЭХРО на скорость съема стали 45Х

Состав электролита,	Плотность тока i ,	Напряжение между	Скорость съема, г/мин
г/л	A/cm ²	электродами, В	0.001
NaCI 150	30	5,8	0,201
	40	9,3	0,240
	50	14,5	0,342
	60	17,1	0,361
	80	19,2	0,480
NaNO ₃ 150	30	6,4	0,195
	40	10,0	0,231
	50	15,1	0,324
	60	18,0	0,385
	80	20,2	0,462
NaNO ₃ 150	30	11,6	0,160
+ NaNO ₂ 10	40	20,4	0,199
+ керосин осветитель-	50	29,2	0,250
ный 15	60	35,6	0,289
	80	40,0	0,361
NaNO ₃ 10 + NaNO ₂ 50	30	10,2	0,171
+ триэтаноламин б	40	17,1	0,200
+ железосинеродистый	50	20,0	0,268
калий 25	60	27,5	0,298
	80	32,0	0,370
NaNO ₃ 150 + бо-	30	6,8	0,192
роглюконат кальция	40	10,3	0,221
30	50	15,5	0,315
	60	18,4	0,322
	80	20,7	0,450
NaCI 150 + боро-	30	6,2	0,196
глюконат кальция 30	40	9,7	0,230
	50	14,9	0,338
	60	17,4	0,350
	80	19,8	0,467
NaCI 50	30	6,1	0,201
	40	9,6	0,239
	50	14,65	0,341
	60	17,20	0,362
	80	19,5	0,480
NaCI 50 + боро-	30	6,15	0,200
глюконат кальция	40	9,60	0,237
1	50	14,7	0,339
	60	17,2	0,361
	80	19,6	0,478
NaCI 50 + боро-	30	6,65	0,198
глюконат кальция 50	40	9,8	0,237
· · · · · · · · · · · · · · · · · · ·	50	14,8	0,339
	60	17,5	0,359
	80	19,8	0,476

NaCI 150 + боро-	30	5,9	0,199
глюконат кальция 1	40	9,4	0,235
тлюконат кальция т	50	14,65	0,340
	60	17,2	0,356
	80	19,3	0,475
NaCI 150 + боро-	30	6,4	0,194
глюконат кальция 50	40	9,8	0,228
тлюконат кальция 50	50	15,0	0,335
	60	17,5	0,346
	80	19,9	0,463
NaCI 200	30	5,5	0,200
14401 200	40	9,0	0,241
	50	14,1	0,340
	60	16,7	0,361
	80	18,9	0,482
NaCl 200 + Sana	30		0,195
NaCI 200 + боро-	40	5,6	0,193
глюконат кальция 1		9,1	
	50 60	14,2	0,336
	80	16,9	0,357
NaNO 50		19,1	0,473
NaNO ₃ 50	30	6,85	0,194
	40	10,3	0,232
	50	15,4	0,320
	60	18,3	0,336
22.220. 20. 2	80	20,5	0,460
NaNO ₃ 50 + боро-	30	6,95	0,193
глюконат кальция 1	40	10,4	0,230
	50	15,5	0,317
	60	18,45	0,331
	80	20,6	0,458
NaNO ₃ 50 + боро-	30	7,3	0,189
глюконат кальция 50	40	10,6	0,226
	50	15,7	0,312
	60	18,6	0,324
	80	20,8	0,451
NaNO ₃ 150	30	6,45	0,195
	40	10,1	0,230
	50	15,2	0,323
	60	18,1	0,333
	80	20,3	0,460
NaNO ₃ 150 + бо-	30	6,85	0,190
роглюконат кальция	40	10,4	0,219
50	50	15,6	0,313
	60	18,5	0,320
	80	20,8	0,447
NaNO ₃ 300	30	5,8	0,192
	40	9,1	0,230
	50	14,1	0,320
	60	16,8	0,332
	80	19,1	0,460
NaNO ₃ 300 + бо-	30	5,9	0,191
роглюконат кальция 1	50	14,2	0,316
	80	19,2	0,456
NaNO ₃ 300 + 60-	30	6,1	0,187
роглюконат кальция	50	14,3	0,310
50	80	19,4	0,448
•	-	,	, -

Процесс ингибирования бороглюконатом кальция ослабляется конкурирующим участием в комплексообразовании солей, растворенных в среде. Поэтому в электролиты для ЭХРО необходимо вводить большее количество ингибитора для получения той же степени подавления коррозионного процесса, которое наблюдается в воде.

На основе проведенных исследований разработан электролит [10], позволяющий полностью прекратить коррозию обрабатываемых деталей (как в процессе электрохимического формообразования, так и при межоперационном хранении деталей) и оборудования. При этом производительность процесса снижается незначительно, а энергозатраты возрастают на 2–7% (табл. 6), что вполне окупается сохранностью деталей и оборудования.

Нужно отметить, что бороглюконат кальция нетоксичен, а его использование позволяет полностью исключить из электролита для ЭХРО такой токсичный компонент, как нитрит натрия при той же или даже большей степени защиты сталей.

ЛИТЕРАТУРА

- 1. А.с. СССР, кл. С 23 С 1/04, №233820. Способ повышения антикоррозионных свойств электролитов для электрохимической обработки материалов. Погодин-Алексеев Г.И., Гаврилов В.М., Данилина Г.А. Опубл. в Б.И.,1969, № 3.
- 2. *Ito Sukemitsu, Yamamoto Hideo*. Study on electrolytic machining process. XII. Corrosion of mild steels in sodium chloride solution // J. Mech. Lab. Japan. 1967. V.13. №1. P. 15–24.
- 3. *Ito Sukemitsu*, *Shikta Nobue*. Effect of inhibitors on machining characteristics of sodium chloride solution in electrochemical machining // Bull. Jap. Soc. Precis. Engng. 1968. V.2. № 4. P. 311–317.
- 4. *Ямамото Хидео и др.* Исследование коррозии при электрохимической размерной обработке. III. Поведение ингибиторов осаждения в растворах хлористого натрия // J. Mech. Lab. 1970. V.24. № 5. P. 224-230.
- 5. А.с. СССР, кл. В 23 Н 3/08, № 1215902. Электролит для размерной электрохимической обработки. Мирошникова Е.В., Телевной А.В. Опубл. в Б.И., 1986, №9.
- 6. А.с. СССР, кл. В 23 Р 1/16, № 933357. Электролит для электрохимического маркирования. Ковалева А.Д., Ковалев Л.М. Опубл. в Б.И., 1982, № 21.
- 7. Паршутин В.В., Ревенко В.Г., Шолтоян Н.С. Подавление коррозии сталей при электрохимической размерной обработке // Электронная обработка материалов. 2006. № 3. С. 138–147.
- 8. *Паршутин В.В., Шолтоян Н.С., Сидельникова С.П., Володина Г.Ф.* Ингибирование бороглюконатом кальция коррозии углеродистой стали Ст.3 в воде. І.Коррозия в условиях естественной аэрации и принудительной конвекции // Там же. 1999. № 5. С. 42–56.
- 9. Паршутин В.В., Шолтоян Н.С., Сидельникова С.П., Володина Г.Ф. Ингибирование бороглюконатом кальция коррозии углеродистой стали Ст.3 в воде. II. Динамика изменения состава коррозионной среды, анодное поведение стали // Там же. 1999. № 6. С.40–47.
- 10. Патент Молдовы, кл. В 23 Н 3/08, № 3122. Электролит для размерной электрохимической обработки стали. Паршутин В.В., Шолтоян Н.С. Опубл. в Б.И., 2006, № 8.

Поступила 07.12.06

Summary

For maintenance of corrosion resistance of processable work-pieces and the equipment employed in process the electrochemical shaping and at interoperational storage, and also for improvements of working conditions the new electrolite is developed. For this purpose the boron-gluconate additive is introduced in the chloride or nitrate sodium containg electrolyte. As the result full protection of the employed equipment and manufactured pieces is achieved during electrochemical processing without reduction of productivity as well as during long interoperational washing or anticorrosive treatment.