Эволюция тепловых полей однородных проводников при их нестационарном нагреве протекающим током

А. Г. Меркушев, М. А. Павлейно

Санкт-Петербургский государственный университет, Научно-образовательный центр "Электрофизика" физического факультета, ул. Ульяновская, д. 3, г. Санкт-Петербург, Петродворец, 198504, Россия, e-mail: alexei.merkushev@gmail.com, pmf@nm.ru

Предлагается аналитическое решение, описывающее нагрев одномерного однородного проводника джоулевым теплом, выделяющимся в результате протекания по нему электрического тока. Проведено сравнение полученного аналитического решения с результатами расчетов с привлечением метода конечных элементов. Полученные результаты могут быть использованы при решении задач расчета нагрева токоведущих систем в рамках подхода, основанного на представлении реальной системы моделью, состоящей из одномерных проводников, соединенных контактными сопротивлениями.

УЛК 621.3.066

ВВЕДЕНИЕ

В процессе эксплуатации элементы токоведущих систем электроустановок периодически подвергаются воздействию импульсов тока, существенно превосходящего номинальные значения. Такие ситуации возникают, например, при включении мощных электродвигателей, возникновении коротких замыканий и в других случаях. Это приводит к дополнительному нагреву проводников. Предельно допустимые уровни нагрева определяются соответствующими нормативными документами [2]. Важно иметь возможность расчета температурного режима токоведущих систем при их нестационарном нагреве. В общем случае эта задача требует применения численных расчетов в трехмерной постановке, которые могут быть выполнены в среде современных пакетов компьютерного моделирования, таких как Comsol, ANSYS и др. Примеры проведения таких расчетов можно найти в [3-4]. Следует, однако, заметить, что подобные расчеты весьма сложны и ресурсоемки.

В ряде случаев эффективным оказывается упрощенный подход, основанный на представлении реальной системы ее одномерной моделью, состоящей из одномерных проводников, соединенных контактными сопротивлениями. Такой подход для случая нагрева номинальными токами был рассмотрен в [1]. В данной работе проводится обобщение этого подхода на случай нестационарного нагрева. Получено аналитическое решение, описывающее эволюцию тепловых полей в одномерном проводнике, проведено его сравнение с результатами численного моделирования

Приведем математическую формулировку задачи о нагреве одномерного проводника протекающим током:

$$\rho C \frac{\partial}{\partial t} T = \frac{\partial}{\partial x} K \frac{\partial}{\partial x} T + \rho_{e0} (1 + \alpha (T - T_{\rho_{e0}})) j^2 - \sigma (T - T_{ref}), (1)$$

$$\left(-K\frac{\partial T}{\partial x}S\right)_{x=0} = H_l(t),\tag{2}$$

$$\left(K\frac{\partial T}{\partial x}S\right)_{r=1} = H_r(t), \tag{3}$$

$$T_{t=0} = T_{init} . (4)$$

Уравнение (1) — это одномерное уравнение теплопроводности с учетом выделения джоулева тепла и линеаризованных потерь через боковую поверхность. Граничные условия (2) и (3) задают тепловые потоки на обоих концах проводника. Начальное условие (4) предполагает, что до включения тока проводник был равномерно прогрет до некоторой температуры T_{init} .

Здесь T — температура (искомая функция); t — время; x — координата вдоль одномерной системы; ρ — плотность; C — удельная теплоемкость; K — теплопроводность; ρ_{e0} — удельное электрическое сопротивление при температуре $T_{\rho e0}$; α — температурный коэффициент сопротивления; j — плотность тока, протекающего в системе; σ — коэффициент, характеризующий теплообмен проводника с окружающей средой через боковую поверхность; T_{ref} — температура окружающей среды; L — длина проводника; S — площадь поперечного сечения; $H_{l}(t)$ — входной тепловой поток на левом конце системы; $H_{r}(t)$ — входной тепловой поток на правом конце системы.

ПОСТРОЕНИЕ АНАЛИТИЧЕСКОГО РЕШЕНИЯ

Ограничим рассмотрение нагревом, который не превышает температуру размягчения материала проводника, что позволяет считать такие

физические параметры, как плотность, теплоемкость и теплопроводность, постоянными. При этом температурной зависимостью удельного электрического сопротивления пренебрегать нельзя, поскольку при указанных нагревах его величина меняется значительно. Все это в совокупности с предположением линейных тепловых потерь через боковую поверхность проводника позволяет переписать (1) в следующем виде:

$$\frac{\partial T}{\partial t} = \chi \frac{\partial^2 T}{\partial x^2} + w_1 T + w_0. \tag{5}$$

В (5) использованы следующие обозначения: $\chi = K/(\rho C)$ – температуропроводность,

$$w_0 = (\rho_{e0}(1 - \alpha T_{\rho_{e0}})j^2 + \sigma T_{ref})/(\rho C),$$

$$w_1 = (\rho_{\alpha 0} j^2 \alpha - \sigma) / (\rho C).$$

Получим из (5) уравнение в безразмерных переменных. Для этого введем безразмерную координату $\xi = x/L$ и безразмерное время $\tau = t/t_{\rm max}$, где $t_{\rm max}$ — верхняя граница конечного временного интервала рассматриваемого процесса. Кроме того, удобно произвести замену искомой функции (изменение начала отсчета

шкалы температур) $T = T - w_0 / w_1$, что сделает уравнение однородным. В итоге (5) примет вид

$$\frac{\partial \hat{T}}{\partial \tau} = \theta_1 \frac{\partial^2 \hat{T}}{\partial \xi^2} + \theta_2 \hat{T}. \tag{6}$$

В (6) использованы обозначения: $\theta_1 = \chi t_{\text{max}}/L^2$ и $\theta_2 = t_{\text{max}}w_1$. Эти два безразмерных параметра вобрали в себя информацию о свойствах системы.

Используя безразмерную координату, граничные условия (2) и (3) можно переписать так:

$$-\left(\frac{\partial \hat{T}}{\partial \xi}\right)_{\xi=0} = R_i H_I(t), \tag{7}$$

$$\left(\frac{\partial \hat{T}}{\partial \xi}\right)_{\xi=1} = R_t H_r(t). \tag{8}$$

В (7) и (8) использовано обозначение $R_t = L/(KS)$, по размерности эта величина является тепловым сопротивлением. Можно еще упростить записи (7) и (8), если положить $T_l(t) = R_t H_l(t)$ и $T_r(t) = R_r H_r(t)$.

С учетом замены искомой функции начальное условие (4) примет вид

$$\hat{T}_{\tau=0} = T_{init} + w_0 / w_1. \tag{9}$$

Итак, теперь мы имеем задачу (6)–(9), сформулированную в безразмерных переменных. Для решения полученной начально-краевой задачи с

неоднородными граничными условиями применим редукцию граничных условий. Для этого сделаем еще одну вспомогательную замену искомой функции:

$$\hat{T} = \tilde{T} + f(\xi),$$

$$f(\xi) = \theta(\xi_l - \xi)(\xi_l - \xi)T_l + \theta(\xi - \xi_r)(\xi - \xi_r)T_r,$$
 (10)

где $f(\xi)$ специально подобрана так, чтобы T удовлетворяла однородным граничным условиям. В (10) $\theta(\xi)$ – это функция Хевисайда, точки ξ_l и ξ_r принадлежат интервалу (0; 1) и удовлетворяют неравенству $\xi_l \leq \xi_r$. Чтобы дать более ясное представление о свойствах функции $f(\xi)$, на рис. 1 приведем ее схематичный график.

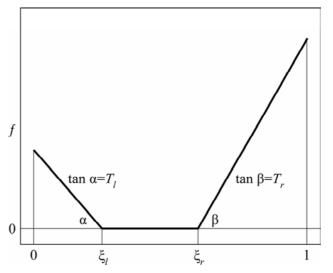


Рис. 1. Схематичный график функции f.

После такой замены уравнение (6) примет вид

$$\frac{\partial \tilde{T}}{\partial \tau} = \theta_1 \frac{\partial^2 \tilde{T}}{\partial \xi^2} + \theta_2 \tilde{T} + g(\xi) + h(\xi). \tag{11}$$

В (11) использованы обозначения:

$$g(\xi) = \theta(\xi_l - \xi)(\xi_l - \xi) \left(\theta_2 T_l - \frac{dT_l}{d\tau}\right) + \theta(\xi - \xi_r)(\xi - \xi_r) \left(\theta_2 T_r - \frac{dT_r}{d\tau}\right),$$
(12)

$$h(\xi) = \theta_1 \left(\delta(\xi_l - \xi) T_l + \delta(\xi - \xi_r) T_r \right). \quad (13)$$

В (13) $\delta(\xi)$ – дельта/функция Дирака.

Граничные условия после замены искомой функции окажутся однородными:

$$\left(\frac{\partial \tilde{T}}{\partial \xi}\right)_{\xi=0} = 0, \quad \left(\frac{\partial \tilde{T}}{\partial \xi}\right)_{\xi=1} = 0. \tag{14}$$

Начальное условие примет вид

$$\tilde{T}_{\tau=0} = T_{init} + w_0 / w_1 - f_{\tau=0}. \tag{15}$$

Для решения задач (11), (14), (15) восполь-

зуемся методом разделения переменных. При этом решение строится в виде ряда:

$$\tilde{T} = \sum_{k=0}^{\infty} \Psi_k(\tau) \Xi_k(\xi). \tag{16}$$

Базисные функции $\Xi_k(\xi)$ можно построить, рассматривая уравнение (11), отбросив в нем неоднородность. Подстановка в это уравнение

 $T = \Psi(\tau)\Xi(\xi)$ приводит к задаче Штурма-Лиувилля, решением которой является класс базисных функций $\Xi_k(\xi)$ следующего вида:

$$\Xi_k(\xi) = \cos(\pi k \xi), k = 0, 1, 2,..$$
 (17)

Теперь, чтобы получить уравнения для функций $\Psi_k(\tau)$, нужно взять коэффициент Фурьеразложения по базису (17) от обеих частей уравнения (11) (уже с учетом неоднородности):

$$\frac{d\Psi_k}{d\tau} = \left(\theta_2 - \theta_1 (\pi k)^2\right) \Psi_k + g_k + h_k. \tag{18}$$

В (18) g_k и h_k — коэффициенты Фурье функций $g(\xi)$ и $h(\xi)$ соответственно. Начальные условия для набора уравнений (18) можно получить, взяв коэффициент Фурье от начальных условий (15) краевой задачи:

$$(\Psi_k)_{\tau=0} = (T_{init} + w_0 / w_1) \delta_{k,0} - (f_k)_{\tau=0}.$$
 (19)

Решения начальных задач (18), (19) в общем случае примут вид

$$\Psi_{k}(\tau) = \exp\left[(\theta_{2} - \theta_{1}(\pi k)^{2})\tau\right] \times \left(\int_{0}^{\tau} d\tau' \exp\left[-(\theta_{2} - \theta_{1}(\pi k)^{2})\tau'\right] (g_{k} + h_{k}) + (T_{init} + w_{0} / w_{1})\delta_{k,0} - (f_{k})_{\tau=0}\right). (20)$$

Можно заметить, что последовательности g_k , h_k и $(f_k)_{\tau=0}$ ограничены равномерно по параметрам ξ_l и ξ_r . Этого достаточно для того, чтобы утверждать, что часть выражения (20), связанная с внеинтегральным выражением во второй строке, убывает быстрее экспоненты с ростом k, а часть, связанная с интегралом при больших k, ведет себя как $1/k^2$ при всех $\tau > 0$, причем равномерно по этим параметрам. Это означает,

что ряд для T будет сходиться равномерно по параметрам ξ_l и ξ_r при $\tau > 0$. Поэтому предельные переходы по данным параметрам можно внести под знак суммы.

Из (10) легко видеть, что если устремить $\xi_l \to 0$, а $\xi_r \to 1$, то $f \to 0$, а значит, $\tilde{T} \to \hat{T}$. С другой стороны, в силу указанной равномерной непрерывности имеем:

$$\lim_{\substack{\xi_l \to 0 \\ \xi_r \to 1}} \tilde{T} = \sum_{k=0}^{\infty} \Xi_k(\xi) \lim_{\substack{\xi_l \to 0 \\ \xi_r \to 1}} \Psi_k. \tag{21}$$

Чтобы раскрыть предел в (21), обратимся к (20). Очевидно, что при $\xi_l \to 0$ и $\xi_r \to 1$, $(f_k)_{\tau=0} \to 0$ (так как f ограничена, а при таком предельном переходе ее носитель стремится к нулю). Рассматривая часть (20), связанную с интегралом, можно заметить, что интегрирование коммутирует с предельным переходом ввиду структуры подынтегрального выражения. При этом $g_k \to 0$ по тем же самым причинам, что и $(f_k)_{\tau=0}$, а h_k будет иметь конечный предел, который нетрудно вычислить:

$$h_k = \theta_1 \left[(2\cos(\pi k \xi_1) - \delta_{k,0}) T_1 + (2\cos(\pi k \xi_r) - \delta_{k,0}) T_r \right], (22)$$

$$h_k \to \theta_1 \left[(2 - \delta_{k,0}) T_l + (2(-1)^k - \delta_{k,0}) T_r \right].$$
 (23)

Итак, получается решение:

$$\hat{T} = \theta_1 \sum_{k=0}^{\infty} \left[(2 - \delta_{k,0}) I_i^k(\tau) + (2(-1)^k - \delta_{k,0}) I_r^k(\tau) \right] \cos(\pi k \xi) + I_0(\tau).$$
(24)

В (24) использованы обозначения:

$$I_{l}^{k}(\tau) = \exp\left[(\theta_{2} - \theta_{1}(\pi k)^{2})\tau\right]$$

$$\int_{0}^{\tau} d\tau' \exp\left[-(\theta_{2} - \theta_{1}(\pi k)^{2})\tau'\right] T_{l}(\tau'),$$
(25)

$$I_r^k(\tau) = \exp\left[(\theta_2 - \theta_1(\pi k)^2)\tau\right]$$

$$\int_0^{\tau} d\tau' \exp\left[-(\theta_2 - \theta_1(\pi k)^2)\tau'\right] T_r(\tau'),$$
(26)

$$I_0(\tau) = \exp[\theta_2 \tau] (T_{init} + w_0 / w_1).$$
 (27)

Построив T , легко найти T, совершив обратный сдвиг шкалы температур. Для конечного момента времени можно записать следующие выражения для T:

$$T = \theta_1 \left(2 \sum_{k=1}^{\infty} \left[I_l^k + (-1)^k I_r^k \right] \cos(\pi k \xi) + I_l^0 + I_r^0 \right) +$$

$$+ I_0 - w_0 / w_1,$$
(28)

$$I_l^k = I_l^k(1), I_r^k = I_r^k(1), I_0 = I_0(1).$$
 (29)

Рассмотрим частный случай решения. Пусть входные потоки на концах системы постоянны, это соответствует постоянству T_l и T_r . При этом если θ_2 отлична от нуля, то:

$$I_{l}^{k} = I^{k}T_{l}, I_{r}^{k} = I^{k}T_{r},$$

$$I^{k} = \frac{\exp(\theta_{2} - \theta_{1}(\pi k)^{2}) - 1}{\theta_{2} - \theta_{1}(\pi k)^{2}}.$$
(30)

Тогда (28) примет вид

$$T = \theta_1 \left(2 \sum_{k=1}^{\infty} I^k \left[T_l + (-1)^k T_r \right] \cos(\pi k \xi) + I^0 (T_l + T_r) \right) +$$

$$+ I_0 - w_0 / w_1.$$
(31)

Если же $\theta_2 = 0$, то выражение для I^k в (30) несколько модифицируется:

$$I^{k} = \frac{1 - \exp(-\theta_{1}(\pi k)^{2})}{\theta_{1}(\pi k)^{2}}.$$
 (32)

В (32) при k=0 возникает неопределенность, раскрыв которую, получим $I^0=1$.

Решение примет вид

$$T = \theta_1 \left(2 \sum_{k=1}^{\infty} I^k \left[T_l + (-1)^k T_r \right] \cos(\pi k \xi) + T_l + T_r \right) + T_{init}.$$
 (33)

СРАВНЕНИЕ С ЧИСЛЕННЫМ МОДЕЛИРОВАНИЕМ

Приведем результаты сравнения выполненного аналитического решения с результатами численного моделирования, полученными методом конечных элементов.

Рассмотрим одномерный медный проводник с эффективным сечением 8e-5м² и длиной 0,4 м с протекающим в нем током 1,5 кA, который задан постоянным потоком тепла на левой границе 100 Вт и адиабатическим условием на правой границе. Начальная температура устанавливалась равной комнатной (293,15 К).

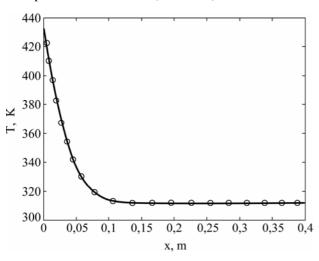


Рис. 2. Распределение температуры в одномерном проводнике, результаты численного расчета (круглый маркер) и аналитической модели (сплошная линия).

На рис. 2 приведены графики распределения температуры в одномерном проводнике спустя 10 с после включения тока. Набором круглых маркеров представлен график, который отвечает численному решению, полученному методом конечных элементов, сплошной график — аналитическому решению (использовалось 20 первых членов ряда (33)). Предложенное аналитическое решение обладает хорошей сходимостью, то есть для получения качественного описания распре-

деления температуры в одномерном проводнике достаточно рассматривать небольшой набор первых членов ряда.

ЗАКЛЮЧЕНИЕ

Получено аналитическое решение, описывающее нагрев одномерного проводника, по которому протекает электрический ток. Проведено его сравнение с результатами численного моделирования. Предложенное решение обладает хорошей сходимостью и позволяет адекватно описывать нестационарный нагрев одномерного проводника, что дает возможность использовать его для приближенного расчета нагрева токоведущих систем.

ЛИТЕРАТУРА

- 1. Николаев П.О., Павлейно М.А., Чалый А.М. Численное моделирование стационарных тепловых полей в токонесущих конструкциях. Труды 3-й Всероссийской научной конференции «Проектирование инженерных и научных приложений в среде Matlab», СПб, октябрь, 2007 г. С. 308–319.
- 2. ГОСТ Р 52736-2007. Короткие замыкания в электроустановках. Методы расчета электродинамического и термического действия тока короткого замыкания. Москва. Стандартинформ, 2007.
- Istardi Didi, Triwinarko Andy. Induction Heating Process Design Using Comsol&Reg Multiphysics Software. *Telkomnika*. 2011, 9(2), 327–334.
- Je-Hyoung Park, Sung-Mo Kang, Yan Zhang, Kazuhiko Fukutani, and Ali Shakouri. Threedimensional Electro-thermal Modeling of thin Film Micro-refrigerators for Site-specific Cooling of VLSI ICs. IMAPS 39th Int. Symp. on Microelectronics. pp. 883–890, San Diego, Oct. 8–12, 2006.

Поступила 28.02.12

Summary

The paper offers an analytical solution to the temperature distribution problem in one-dimensional current-carrying conductor. The proposed solution is compared with the numerical solution obtained via finite elements method. When considering temperature distribution evolution problem in current-carrying systems, a real system has been replaced with the system of one-dimensional current-carrying conductors and concentrated contact resistances.