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 Introduction 
 In the recent past considerable attention has been given to the study of dynamics that governs the 
release of free energy associated with sheared flows in magnetohydrodynamics (MHD) and in plasma 
physics. Sheared flows are the dominant features found in space plasma. Simulation of ion-cyclotron mode 
in a magneto-plasma with transverse inhomogeneous electric field for a Maxwellian plasma suggested that 
electrostatic waves with the frequencies of the order of ion-cyclotron frequencies could be destabilized as a 
result of coupling of regions of positive and negative ion energy of waves [1–3]. A rigorous analytical 
treatment using MHD approach has established the existence of two modes (i) large wavelength Kelvin-
Helmholtz (K-H) mode and (ii) shear wavelength ion-cyclotron mode. 
 In fusion plasma a sheared flow has been found to modify significantly the magneto-hydrodynamic 
equilibrium and ballooning stability of toroidal confinement devices [4, 5]. More importantly, shear driven 
turbulence can have a significant effect on particle, momentum and energy transport. Velocity shear has been 
recently identified as an important element in the transition from low confinement (L) to high confinement 
(H) mode in tokomak plasmas [6–9]. 
 Parallel velocity shear (PVS) is a plasma configuration with ion flow parallel to the magnetic field, 
but with a velocity gradient transverse to B. PVS is commonly observed along the Earth’s auroral field lines 
and in association with magnetic field-aligned current may excites ion cyclotron instability. Ganguli et al. 
[10], using Ganguli et al. [1, 2] and Nishikawa et al. [3], Vlasov theory and particle-in-cell (PIC) simulation, 
have analyzed the effect of inhomogeneous parallel ion flow on the excitation of electrostatic ion cyclotron 
(EIC) waves in an attempt to understand in-situ observations of these waves in the presence of levels of 
field-aligned currents that were generally subcritical waveforms. They discovered that ion flow gradients 
could give rise to a new class of ion-cyclotron waves driven by “inverse cyclotron damping” even in the 
absence of field-aligned current. 
 Furthermore the ion flow gradient mechanism can drive the multiple cyclotron harmonics giving rise 
to “spiky” waveforms has been observed on FAST S/C [11]. Using an extension of the early work of 
D’Angelo [12] on shear driven (K-H) waves, Merlino [13] used a purely fluid treatment that also included a 
density gradient to show that the parallel velocity shear could excite EIC waves in plasma with no current. 
 In the result of a series of experiments, investigating the effect of a parallel velocity shear on ion-
cyclotron waves, it has been demonstrated that PVS can be an important excitation mechanism of this plasma 
mode. It is important to note that in a Q-machine, EIC wave growth without shear has been observed in 
current free plasma when free energy due to parallel velocity shear was available. PVS is capable of 
generating a multiple EIC spectrum with high order harmonics having multitudes comparable to the 
fundamental. Electrostatic ion-cyclotron instability lead by magnetic field-aligned current was first observed 
in a narrows current channel (width < ion gyro-radius) in a Q-machine [14]. Many of the characteristics of 
this instability that have been investigated experimentally were in agreement with the local theory of 
Drummond and Rosenbluth [15] appropriate to a uniform magnetized plasma, in which electron drift along B 
field lines with the same drift velocity at all points in plasma [16, 17]. The effect of a transverse gradient in 
the plasma flow velocity parallel to the magnetic field on the excitation of EIC waves has also been analyzed 
by Ganguli et al. [10]. They showed that ion flow gradients (parallel velocity shear) can give rise to a new 
class of ion cyclotron waves via inverse cyclotron  damping,  with  a  resulting  spectrum  of multiple 
cyclotron harmonics. The effect of parallel velocity shear on EIC wave excitation was studied experimentally 
by Agrimson et al. [18], who pointed out that the typical configuration used to study EIC wave production in 
the laboratory necessarily included the presence of parallel ion flow with transverse shear. These 
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experiments provided clear evidence that parallel velocity shear does play a role in the excitation of EIC 
waves. Further observations of inverse ion-cyclotron damping induced by PVS have also been published by 
Teodorescu et al. [19]. 
 Experimental results indicate that the presence of parallel velocity shear may lead to the excitation of 
the instability, even in narrow current filaments that would otherwise not sustain the instability [20]. The 
instabilities associated with velocity shear transitions separating plasmas moving in opposite directions have 
been considered [21]. From one semi-infinite plasma streaming with velocity v<0 the transition can be of the 
so called ion dominated (ID) type where the confining current is only due to the ions and the typical width of 
the transition is of the order of a typical ion Larmor’s radius. In this kind of transition the electrons are 
electrostatically confined. For v>0 the transition can be of the so called electron dominated (ED) type where 
the confining current is only due to electrons while the ions are electrostatically confined. The ED transition 
has a typical width of the order of a mean electron Larmor’s radius. It has been shown [22] that these two 
kinds of transition correspond to the two boundaries of a streaming finite plasma beam, one of the 
boundaries being of the ED type white the other boundary is of the ID type. 
 There has been considerable interest in recent years in studying the possibility of destabilizing space 
plasmas with velocity shears. There have, in particular been both direct and indirect evidence for sharp 
horizontal structures in field-aligned currents [23–26]. The two phenomena, intense bursts of field-aligned 
currents and large localized ion up flows have been shown to be on the edge of auroral arcs, where narrow 
but intense parallel current densities also exist. 
 Interest has also been created in the role played by horizontal shears in field-aligned flows in the 
excitation of plasma waves in ionospheric and magnetospheric plasmas. Earlier theoretical study suggested 
and using of the fluid theory that in the presence of collisions, the horizontal shears in the field-aligned ion 
velocity could produce very low frequency modes in the frame of reference of moving F-region plasma at an 
angle very close to perpendicular to the magnetic field. Gavrishchaka et al. [27] concluded that the current 
driven electrostatic ion-cyclotron mode could be excited with parallel drifts significantly below the critical 
drift for homogenous EIC and also that infinitesimal shears could destabilize waves. Gavrishchaka et al. [28] 
explored the weak and strong shear limits of the earlier paper to conclude that for weak shears the minimum 
field-aligned currents were included much smaller than the critical currents for EIC instabilities. Within the 
fluid limit (requiring in particular that Te>>Ti), it was found that collisions and Larmor’s radius corrections 
both acted to modify the threshold conditions in the regimes explored by Basu and Coppi [29] and 
Gavrishchaka et al. [27]. In particular, collisions usually meant that the plasma could no longer become 
unstable to infinitesimal shears, however, shears always introduced a new zero current mode for ω/kαs < 1 
(where αs be the thermal velocity) for moderate shears. 
 In the case of parallel flow shear experiments performed in the Q-upgrade machine it is found that 
ion-cyclotron instability is originally excited by applying positive bias potentials to a small disc electrode 
adjusted at the centre of a magnetized plasma column. This instability is enhanced by shear and is suppressed 
by the larger shear. In the case of perpendicular flow shear experiments on the other hand the ion cyclotron 
instability is excited by the small disc electrode and suppressed by only the slight shear. The perpendicular 
shear is found to suppress both the current driven type and the potential driven type instabilities which can be 
excited by changing the bias voltage applied to the small disc electrode. 
 Three dimensional electrostatic particle simulations recently performed in order to investigate the 
effects of ion flow velocity shear, in detail have shown that the parallel velocity shear of the ion flow can 
excites these low frequency instabilities and the excited instabilities are localized at the velocity shear region. 
Parallel velocity shear is a plasma configuration with ion flow parallel to the magnetic field, but with a 
velocity gradient transverse to B. It is commonly observed along the Earth’s auroral field lines and in 
association with magnetic field-aligned currents, may excite ion-cyclotron waves. In the present paper the 
effect of PVS on the excitation of electrostatic ion-cyclotron waves in plasma has been studied with and 
without field-aligned currents in laboratory conditions. 
 Analysis 
 Spatially homogeneous anisotropic plasma subjected to an external magnetic field 

ze0B0B ˆ= and an 

inhomogeneous DC electric field 
xe(x)0E(x)0E ˆ=  has been considered. In order to obtain the dispersion 

relation, the Vlasov-Maxwell equations are linearized for inhomogeneous plasma by small perturbations of 
E1, B1 and fs1. These are perturbed quantities and are assumed to have harmonic dependence as exp i(kr-ωt). 
 The linearized Vlasov equations obtained by separating the equilibrium and non equilibrium parts 
following the technique of Misra and Pandey [30] and Pandey et al. [31] in units of c=1 (c is the speed of 
light) are given as: 
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where the force is defined as F = mdv/dt. 
( )0 0sF e E ( x ) v B= + ×⎡ ⎤⎣ ⎦ .                                                                        (3) 

 The particle trajectories are obtained by solving the equation of motion defined from equation (3) 
and S(r, v, t) is defined as: 

[ ]s s0
1 1

s

e fS(r,v,t) E v B
m v

⎛ ⎞ ∂⎛ ⎞= − + ×⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎝ ⎠ .                                                            (4) 

 The method of characteristics solution is used to determine the perturbed distribution function fs1. 
This is obtained from equation (2) by 

( ) ( ){ }0 0 0
` ` `f (r,v,t) S r r,v,t ,v r,v,t ,t t dt 's1

∞= −∫ ,                                           (5) 

where the index s denotes species.  
 We transformed the phase space co-ordinate system from (r, v, t) to (r0, v0, t-t`). The particle 
trajectories obtained by solving equation (3) for the given external field configuration by Misra and Tiwari 
[32] are given as: 

( ) ( ) ( )0 sin θ sinθ
Ω Ω2

s s

E' xvx t x 1 Ω ts4
⊥
⎛ ⎞ ⎡ ⎤= + + − −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠ ,                                              (6) 
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, 

( ) 0 ||z t z v t= + .  

 Here, θ  is the angle between the vectors k and B0. The values ( ) ( )' ''E x , E x  are the derivatives of 

( )
2

0x 2
xE x E 1
a

⎛ ⎞
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 It should be noted that 
t
ΔΔ'
∂
∂

=  represents the drift velocity. The value a is the scale length of 

electric field inhomogeneity. It is thought to be comparable to the mean ion gyro-radius, but larger than the 
Debye’s length. When x2/a2 < 1, E(x) becomes a constant uniform field. 
 After some lengthy algebraic simplifications following techniques out lined in Misra and Pandey 
[30] the time integration gives the perturbed distribution function as: 
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )θλ λ λ λ i m n π/2 θ i g p π / 2 s
s1 n 1 m 1 p 2 g 2

m,n,p,gs

ief r,v,t J J J J e e
m ω

− + − += ×∑  

Ω Ω Δ
* * *

1x 1y 1z
|| || s s

1E U V E W E
k v n p k ' ω⊥
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where: 
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λ λ Ω λ Ω λ

*
2 2

1 1 s 1 s 1

E' x E' xn n n nU Cv Cv k v " k v "
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 Here, ( )1n λJ  is the Bessel’s function and the well-known Bessel identity 1λ sinθ θλ1
i ine J ( ) enn

∞
= ∑

= −∞
 

is used. 
 The unperturbed bi-Maxwellian distribution function is written as: 

0 0 0 ξs sm yf f v "= + ,      (8) 
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 Here, ξ” is being the constant of motion and ( )0n x  is the plasma particle density. 
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 Now simplifying m = n, g = p and using the definitions of current density, conductivity and dielectric 
tensor, we get the dielectric tensor: 
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 Now we consider the electrostatic ion-cyclotron instability. 
 

2
|| N||ε|| = .      (10) 

 Here, N is the refractive index. 
 The required electrostatic dispersion relation can be obtained by using the approximation of Huba 
[33] and from equations (8)–(10). 
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 Here, Z(ξ) is the plasma dispersion function [34], 2
psω  is the plasma frequency and ( )μn sI is the 

modified Bessel’s function of order n. 
 Above dispersion relation reduces to that of Huba [33] if inhomogeneous DC electric field is 
removed and further using s||s αα =⊥  and following of the assumptions of Pandey et al. [35], in order to get 
the dispersion relation for electrons and ions (s = i, e) the approximation for electrons are assumed as 
ρ 1ek⊥ <<  and for ions no such assumption is done. Thus, above equation becomes: 
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 Substitution of the asymptotic expansion of ( )ξ
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 The solution of equation (14) is:  
 

1 1
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1 1 1
2

i 1 1
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a b
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 From this expression the dimensionless growth rate has been calculated by computer technique when 

2
1 1 1b 4a c<  and also the dimensionless real frequency has been calculated from above expression. Hence, 

this criterion gives a condition for the growth rate of wave with homogeneous DC electric field considering 
inhomogeneity in electric field is neglected. It means we have discussed the case of homogeneous DC 
electric field.  
 Result and Discussion 

 In this section, we show the solution of the equation (15) for 2 2x a <1 using parameters like a 
magnetic field, density gradient , thermal velocities and etc. which were representative of laboratory by Kim 
and Merlino [16] and Rosenberg, Merlino [17]. We consider plasma in which the heavy positive ions are 
produced due to ionization of K+ and light electron are produced from −

6SF . It is assumed that electron and 

ion temperature ratio 
e

i

T
T  is varying between 2 to 4. It is further assumed that the plasma is immersed in a 

magnetic field whose strengths are varying from 0.24 to 0.32 T and homogeneous DC electric field strength 
from 4 V/m to 12 V/m which is perpendicular to magnetic field. In this case the positive ions gyro-radius  

ρ~ 0.095 cm having a temperature anisotropy 1
T
T

A
i

i
T −= ⊥  varying from 0.5 to 1.5 with density gradient 

inρε  =0.2 has been considered. In this case we would expect that the electrostatic ion cyclotron instability 
could become excited by parallel velocity shear with scale length iA varying from 0.5 to 0.55. 

 In fig. 1 the variation of growth rate γ

iΩ
 versus ρik⊥  for different values of velocity shear scale 

length Ai has been shown for other fixed plasma parameters. The growth rate increases with increasing value 
of shear scale length Ai and the bandwidth slightly increases with Ai  but the maxima of band does not shift. 

The maximum peak value of growth rate is 4.05×10-3 at ρik⊥ =2, Ai=0.55. The mechanism for instability of 
this mode is due to coupling of regions of positive and negative wave energy. This coupling occurs if 
velocity shear is non-uniform and hence velocity shear is the source of instability. 

 Fig. 2 shows the variation of growth rate 
γ

iΩ  versus ρik⊥  for various values of electron ion 

temperature ratio 
e

i

T
T , on this figure the growth rate increases by increasing the values of electron ion 

temperature ratio because due to inhomogeneity in electron ion temperature that depends on the applied 
voltage of electrodes. The maximum peak values of growth rate is 3.85×10-3 at the ρik⊥ =2 with 

homogeneous DC electric field, as velocity shear term is proportional to electron ion temperature ratio
e

i

T
T . 
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Fig. 1. Variation of growth rate iγ/Ω  versus iρk ⊥  

for different values of iA  and other parameters are 
B0=0.24 T, Te/Ti=2, E0=8 V/m, θ = 88.50, AT =1.5, 
εnρi=0.2. 1 – Ai = 0,5; 2 – Ai = 0,55 

Fig. 2. Variation of growth rate iγ/Ω  versus 

iρk ⊥  for different values of Te/Ti and other 

parameters are iA =0.5, B0=0.24 T, E0=8 V/m, 
θ = 88.50, AT=1.5, εnρi=0.2. 1 – Te/Ti = 2; 
2 – Te/Ti = 3; 3 – Te/Ti = 4  

 Fig. 3,a and b show the variation of real frequency 
i

r

Ω
ω

 ( rω  is a real frequency) and growth rate 

γ

iΩ  versus ρik⊥  for different values of magnetic field strength B0 with other fixed parameters listed in figure 

caption. The growth rate and real frequency decrease with increasing the magnetic field strength. Due to 
change in magnetic field gyro-frequency has been changed. The homogeneous magnetic field couples 
positive and negative energy waves thus changes the growth rate of the wave. The magnetic field strength is 
a useful parameter for required velocity of EIC wave. Hence, this is useful result for designing a machine for 
cold spray & metal cutting operations. 
 

 
Fig. 3,a. Variation of real frequency ir /Ωω  versus 

iρk ⊥  for different values of B0 and other 

parameters are iA =0.5, Te/Ti=2, E0=8 V/m, 
θ1 = 88.50, AT=1.5, εnρi=0.2. 1 – B0 = 0,2 T; 
2 – B0 = 0,24 T; 3 – B0 = 0,28 T  

Fig. 3,b. Variation of growth rate iγ/Ω  versus 

iρk ⊥  for different values of B0 and other 

parameters are iA =0.5, Te/Ti=2, E0=8 V/m, 
θ = 88.50, AT=1.5, εnρi=0.2. 1 – B0 = 0,2 T; 
2 – B0 = 0,24 T; 3 – B0 = 0,28 T   

 Fig. 4,a and b shows the variation of real frequency Ω
r

i

ω
 and growth rate 

γ

iΩ  versus ρik⊥  for 

various values of homogeneous DC electric field. The growth rate deceases with increasing of the value of 
homogeneous DC electric field from 4 V/m to 12 V/m. But the real frequency increases with increasing the 
value of electric field. In general, this has a stabilizing effect introducing to the resonant and non-resonant 
interactions affecting on the growth rate and real frequency. This result will be helpful for designing the 
machine like a cold spray and metal cutting to control the frequency and velocity of the wave. The velocity 
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of EIC wave is 1011 m/s for the value of homogeneous DC electric field 8 V/m and it is 2527 m/s for  
20 V/m with other fixed parameters listed in figure caption. 
 

  
Fig. 4,a.Variation of real frequency ir /Ωω  versus 

iρk ⊥  for different values of E0 and other 

parameters are iA =0.5, B0=0.24 T, Te/Ti=2, 
θ = 88.50, AT=1.5, εnρi=0.2. 1 – E0 = 16 V/m; 
2 – E0 = 20 V/m; 3 – E0 = 24 V/m  

Fig. 4,b. Variation of growth rate iγ/Ω  versus 

iρk ⊥  for different values of E0 and other 

parameters are iA =0.5, B0=0.24 T, Te/Ti=2, 
θ = 88.50, AT=1.5, εnρi=0.2. 1 – E0 = 16 V/m; 
2 – E0 = 20 V/m; 3 – E0 = 24 V/m  

 Fig. 5 shows the variation of growth rate versus angle between wave number k⊥  and k like θ with 

parameter listed in figure caption. The maximum growth rate obtained for θ=88.50. The parameters like a 

density gradient ε ρn i  and temperature anisotropy 1i
T

i

TA
T
⊥= −  have less effect on growth rate but the growth 

rate increases slightly with increasing the values of inρε  and TA . 

 
 
Fig. 5. Variation of growth rate iγ/Ω  versus θ  for parameters like iρk ⊥ =2, Ai=0.5, B0=0.24 T, Te/Ti=2, 
E0=8 V/m, AT=1.5, εnρi=0.2 

 
 Conclusion 
 In this paper the effect of magnetic field, electric field, electron ion temperature ratio, temperature 
anisotropy of ions, shear scale length and density gradient on the growth rate and real frequency have been 
discussed separately. This result is useful for designing machine for cold spray & metal cutting operations 
with help of required velocity of generated and excited EIC wave. 
  
 Acknowledgement: I thank the reviewer for very useful suggestions which have been incorporated 
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Summary  
 

Analysis and study of parallel flow velocity shear and electrostatic ion cyclotron (EIC) instability 
have been done in plasma containing massive positive ions and electron by using the method of 
characteristics solution and kinetic theory in the presence of homogeneous direct-current (DC) electric field 
perpendicular to ambient magnetic field. The effect of many parameters on growth rate and real frequency 
has been discussed by using the experimental data. Applications to possible laboratory plasmas and 
industries are also discussed. 
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