ДВИЖЕНИЕ ЗАРЯЖЕННОЙ ЧАСТИЦЫ ПОД ВОЗДЕЙСТВИЕМ СКРЕЩЕННЫХ ПЕРЕМЕННЫХ ЭЛЕКТРИЧЕСКОГО И МАГНИТНОГО ПОЛЕЙ

**Государственный аграрный университет Молдовы, ул. Мирчешть, 44, г. Кишинев, MD-2049, Республика Молдова ^{*}Институт прикладной физики АНМ, ул. Академией, 5, г. Кишинев, MD-2028, Республика Молдова, mbologa@phys.asm.md

Введение. Интерес к приложениям скрещенных электрических и магнитных полей вызван необходимостью решения ряда технических задач, таких как разделение изотопов, массоэлектроскопия [1], магнитогидродинамическая сепарация [2], очистка и опреснение воды [3, 4], и др. Применение постоянных полей для этих целей ограничено электролизными эффектами и одним из перспективных путей устранения нежелательных явлений — использованием переменных синхронных электрических и магнитных полей. При этом в качестве одной из первичных возникает задача о движении частицы под воздействием скрещенных полей. Несмотря на существование отдельных решений аналогичных задач, в известной литературе они отсутствуют [5–8].

Постановка и решение задачи. Пусть векторы напряженности электрического поля \vec{E} и магнитной индукции \vec{B} заданы равенствами:

$$\vec{E} = \vec{k}E_0 \cos \omega t, \ \vec{B} = \vec{i}B_0 \cos \omega t,$$
 (1)

где E_0 и B_0 – амплитуды полей, ω – их частота, \vec{i} и \vec{k} – единичные орты координатных осей x, z соответственно.

Будем считать, что частица с зарядом q и массой m в начальный момент t=0 покоилась в начале координат, то есть

$$\vec{r} \big|_{t=0} = 0; \ \vec{V} \big|_{t=0} = 0.$$
 (2)

Уравнения движения частицы с учетом (1) примут вид

$$V_x' = 0,$$

$$V_y' = \frac{qB_0}{m}V_z\cos\omega t,$$

$$V_z' - \left(\frac{qE_0}{m} - \frac{qB_0}{m}V_y\right)\cos\omega t.$$
(3)

Из первого уравнения системы (3) с учетом (2) следует $V_x = const = 0$, то есть движение частицы происходит в плоскости *yoz*.

Для решения оставшихся двух уравнений полагаем

$$\xi = \sin \omega t. \tag{4}$$

Тем самым исключаем из (3) $\cos \omega t$:

$$V'_{y} = \frac{\omega_{0}}{\omega} V_{z},$$

$$V'_{z} = \frac{qE_{0}}{\omega m} - \frac{\omega_{0}}{\omega} V_{y},$$

$$\omega_{0} = qB_{0} / m,$$
(5)

© Паша П.Н., Гросу Ф.П., Болога М.К., Электронная обработка материалов, 2008, № 1, С. 40–43.

где штрих означает производную по новой переменной ξ .. Исключив из первого уравнения системы (5) V_z , получим

$$V_y'' + \frac{\omega_0^2}{\omega^2} V_y = \frac{q E_0 \omega_0}{\omega^2 m}.$$
 (6)

Определив отсюда V_y , затем V_z из (5) с учетом начальных условий (2), окончательно найдем:

$$Vy = \frac{2E_0}{B_0} \sin^2 \left(\frac{\omega_0}{2\omega} \sin \omega t \right),$$

$$Vz = \frac{E_0}{B_0} \sin \left(\frac{\omega_0}{\omega} \sin \omega t \right).$$
(7)

Предельным переходом $\omega \to 0$ получаем случай постоянных полей [5]:

$$V_{y} = \frac{2E_{0}}{B_{0}} \sin^{2}\left(\frac{\omega_{0}t}{2}\right),$$

$$V_{y} = \frac{E_{0}}{B_{0}} \sin \omega t.$$
(8)

Из (7) и (8) видно, что как и в случае постоянных полей, так и переменных синхронных, имеется средняя, отличная от нуля, составляющая скорости дрейфа частицы в направлении ОУ, перпендикулярном направлению полей. Причем это направление определяется знаком отношений $\frac{E_0}{B_0}$ и не зависит от знака заряда, в то время как в направлении оси z средняя скорость V_z =0.

Для того чтобы иметь лучшее представление о характере движения, найдем из (7) годограф скорости, предварительно представив $V_{\rm y}$ в виде

$$V_{y} = \frac{E_{0}}{B_{0}} \left[1 - (\cos \delta \sin \varphi) \right], \tag{9}$$

где $\delta = \omega_o / \omega$; $\varphi = \omega t$.

Тогда из (8) и (9) следует

$$\left(V_{y} - \frac{E_{0}}{B_{0}}\right)^{2} + V_{z}^{2} = \left(\frac{E_{0}}{B_{0}}\right)^{2},$$
(10)

то есть годограф скорости представляет собой окружность (рис. 1).

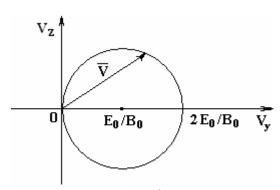


Рис. 1. Годограф скорости

Из рисунка видно, что частица $V_{\rm z}$, совершая колебания, по вертикали дрейфует в направлении $V_{\rm y}$ ($E_0/B_0{>}0$).

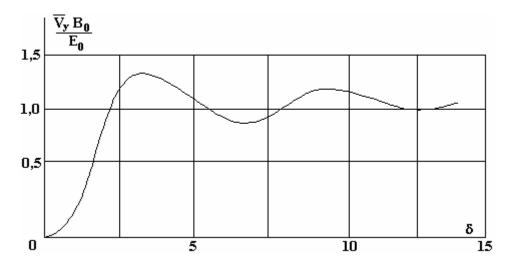
Далее находим среднее значение дрейфовой скорости V_y , так как им определяется эффективность воздействия полей на тот или иной процесс.

Усредняя (9) по времени, получаем

$$\overline{V}_{y} = \frac{E_{0}}{B_{0}} \left[1 - \overline{\cos(\delta \sin \varphi)} \right],$$

где черта означает среднее значение по времени $t \to \infty$. Теперь воспользуемся соотношением для функций Бесселя [9]:

$$\cos(\delta \sin \varphi) = I_o + 2\sum_{n=1}^{\infty} I_{2n}(\delta) \cos 2n\varphi.$$


Учитывая правила усреднения и то, что $\frac{\overline{\cos 2ny}}{\cos 2ny} = 0$, окончательно найдем

$$\overline{V}_{y} = \frac{E_{0}}{B_{0}} [1 - I_{0}(\delta)], \tag{11}$$

где $I_{\rm o}(\delta)$ — функция Бесселя 1-го рода нулевого порядка действительного аргумента δ . В случае постоянных полей в (11) следует положить ω =- 0, то есть $\delta = \frac{\omega_0}{0} = \infty$. Следовательно, для постоянных полей

$$\overline{V}_{y} = \frac{E_{0}}{B_{0}},$$

так как $I_0(\infty)=0$.

Puc. 2. Зависимость $\left(\overline{V}_{\mathbf{y}}B_{\mathbf{0}}\right)/E_{\mathbf{0}}$ om δ

График зависимости $(\overline{V}_y B_0)/E_0$ от δ представлен на рис. 2. Как видно, средняя скорость проходит через последовательность убывающих по величине максимумов. Наибольшего значения средняя скорость достигает при $\delta = 3.8$, когда

$$\overline{V}_{y \max} \cong 1,403 \frac{E_0}{B_0}.$$
 (12)

Независимость направления дрейфа частицы от знака их заряда означает, что как положительные, так и отрицательные частицы мигрируют в одном направлении, что делает возможным применение скрещенных переменных полей в целях отделения заряженных подсистем более перспективным по сравнению с другими методом, в том числе и методом разделения зарядов в противоположные стороны, когда возникает препятствующая движению разность потенциалов.

Максимальная средняя скорость движения частиц почти в полтора раза превышает таковую в случае постоянных полей. Оценим частоту ω , при которой должен наблюдаться 1-й максимум. Приняв $m \sim 10^{-26}~{\rm kr}$, $q \sim 1.6 \cdot 10^{-19}~{\rm Kn}$, $B_0 \sim 10^{-3}~{\rm Tn}$, найдем $\omega_0 = 5~{\rm k}\Gamma$ ц.

Такая частота легко может быть реализована на практике.

Заметим, что увеличение массы частицы требует пропорционального увеличения индукции магнитного поля для достижения максимума ($\delta=3.8$), что, с другой стороны, приводит к уменьшению средней скорости из-за множителя E_0/B_0 , поэтому применение переменных полей предпочтительнее для очистки среды от микрочастиц, например для обессоливания.

Если все-таки массы велики, а увеличение индукции магнитного поля нежелательно, то режим процесса можно вести на более далеких максимумах, следующий из которых достигается при $\delta \approx 10$, когда $\overline{V}y$ max $\sim 1,25$ E_0/B_0 .

Сами скорости частиц при незначительных напряженностях полей достигают значительных величин. Так, для приведенного выше числового примера при $E_0 \sim 1B/M$ $V_{y \, \rm max} \sim 1,4$ км/с. Это, конечно, большая величина, что обусловлено, в первую очередь, неучетом сил вязкости при движении частиц в реальных средах. Поэтому описанные здесь эффекты прежде всего должны проявиться в газах.

Наконец отметим еще одну особенность воздействия на среды поперечных переменных синхронных полей, а именно зависимость средней скорости V_y от массы частиц. Такая зависимость делает возможным извлечение из замкнутой фазы той или иной фракции путем регулирования частоты и индукции магнитного поля.

ЛИТЕРАТУРА

- 1. *Арцимович А.А.*, *Лукьянов С.Ю*. Движение заряженных частиц в электрических и магнитных полях. М.; Л.: Наука, 1972.
- 2. Повх И.Л., Чекин Б.В. Магнитогидродинамическая сепарация. Киев: Наукова думка, 1978.
- 3. Слесаренко Н.Н. Современные методы опреснения морских и соленых вод. М.: Энергия, 1973.
- 4. *Усатенко Н.Т.* Влияние электрофизического воздействия на водосодержащие жидкие системы // Магнитная обработка водных систем. М.: 1981.
- 5. *Ландау Л.Д.*, *Лифшиц Е.М.* Теория поля. М.: Наука, 1978.
- 6. Росси Б.С., Ольберт С. Введение в физику космического пространства. М.: Атомиздат, 1974.
- 7. Акасофу С.И., Чепмен С. Солнечно-земная физика. Ч.2. М.: Мир, 1975.
- 8. *Гросу Ф.П., Болога М.К., Кожухарь И.А.* Движение заряженной частицы в постоянном поле плосконепараллельного конденсатора // Электронная обработка материалов. 2004. № 3. С. 28–36.
- 9. *Янке Е.*, Эмде Ф., Лет Ф. Специальные функции. М., 1977.

Поступила 05.11.07

Summary

Deduction of the formulas for velocity of charged particle in the external crossed electric and magnetic fields, synchronously varying according to a cosine law, is given. Physical peculiarities of the motions under the consideration as well as their practical applications are discussed.