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Introduction

Automatic regulation of cockpit airflow (Qt) has the following purposes:
1) Counterbalance of ejected air (through Automatic Regulation System-ARS-exhaust valve and
through non-sealed parts of the cabin).
2) Cabin air pressure regulation.
The ARS consists from: airflow sensor, regulator and working element.

System structure:
Such an ARS is depicted in Fig. 1 [1, 2] where:
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Fig. 1. The structure of the ARS for the cabin airflow.
1 - fixed cylinder; 2 — mobile cylinder with valve; 3 — Venturi tube (exhaust);
4 — corps; 5 —spring; 6 — gophred box; 7 — safety valve.
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On the side of the fixed cylinder there are several controlled exhausts. The status of those exhausts is
linked (and controlled) by the position of the mobile cylinder, thus by valve 2. The motion of valve 2 is

controlled by elements 5 and 6. If pressure P, increases over a prior established maximum value, the air is

evacuated into the atmosphere through the safety valve (7).
The regulator equation:

The ARS (as presented in Fig. 1) is holding Pr = constant (the air pressure within the regulator
chamber) for limiting the amount of air transmitted to the cabin. After applying the derivative with time,
(where VR = volume of regulator’s chamber) we have:

and, assuming ddl 0 (variation rate of the temperature within the regulator chamber is negligible) we
t
have:
dp dm; dm
V, —R —RT,—R, —R = . 2)
R dt APTrTE
The flows Qt and QR are functions depending on parameters mentioned in Fig. 1, thus [3]:
Qt:ft(pt'pR’St’Tt)1 3)
Qr= fR(pR’pv’SR’TR)' 4

Using Taylor series, negliging non-linear terms (superior order small infinities), and assuming
Sk = constant , we will have :
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Substituting (5), (6) in (2) we have the regulator dynamic equation:
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We will abtain non-dimensional equation (9) where (10) and zero indexed parentheses were omitted.
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L S (11)
Pr PR
where IE is the regulator chamber filling time and kR =working element pressure autoequalizing coeffi-
cient.

Mobile elements equation
In stationary regime, the flow regulator valve is an equilibrium position, namely X, coordinate

(where x cylinder 2 moment positive for downwards moves) [4].
The forces considerated an mobile elements (having m mass) ave.:

St pr=F+F, +F +F;¢, (12)

where Sef = effective area of gophred box; Fi = inertia force; F, znd_x = viscosity friction force;
dt

F, =k.x = elasticity force (for the grind K, = elasticity coefficient); F; = dry friction force.
Using the above relations, (12) become:

d?Ax  dAx
Set AP = M———+N——+ Kk Ax + F (13)
ef APR a2 n at fr
Assuming F; =0 and introducing dimensionless value.
g= X __ A% _ g (14)
Xmax Stmax
we have:
P _
S dS
ﬁw L+ ng m - _kbR’ (15)
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where:
S. -
2 =M oge o M e Py (16)
Ke K KeXmax
The System Mathematical Model. Stability analysis.
Having in (9)
% P - % Py + o 6, — N Or =F(t), (0
AP Iy 00, = 00
Ny (18)
0S;
(9) end (15) become:
dps k = 1
T S, =—-F(t), (19)
g PR 0 T T
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2 _
+S -k (20)
m g2 t Pr
. TR .
with Tp =— = time constant.
R
After the application of Laplace operator with zero initial conditions and substituting St (S) we
have:
(a353 +a,5% + a5+ aO)ER (s)= (rzms2 + 28,78 +1) F(s), (21)
where
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a3 = kRTRTEn’aZ =kg (ngTmTR + T?n)

(22)
The system characteristic equation is:
a,5° +a,5° + a5 +a, =0 (23)
and Hurwitz stability conditions are exprimed by making the coefficients &;, i = ﬁ positive and
2,8, > ayd, (24)
which, law (22) is:
kg (TR + 26T ) (T + 2E,TR ) > TRT (Kg +KK; ). (25)
In Fig. 2 we have the block diagram (with transfer functions) of the model described by (19)
and (20).
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Fig. 2. Block diagram with transfer functions of the components of the ARS.

Bassed on equation (21) in stationary regime

1

¢ =———F(). 26
Pr () =3 F (=) (26)

For Quax = 550 kg/h = 0,153 kg/s, R = 287 J/kgK, tg = 27 °C (Tr = 300 K), Vg = 100 cm®* = 10 m® and
py = 10° N/m, with relation (10), we have:
T =7,6-107%.

Going back to dimensioned relations (11) we have:

kR:[aqR_aqt] _ Py (G(AQR) G(AQt)j Py (aQR_aQtjz

oPr  Pr a(ApR)_a(ApR) OPr  OPR

by (AQR—AQIJ _ by (AQR _AQ J
thax ApR 0 ApR thax thax 0

0 Qt max 0 Qt max

For AQg/Qmax =4-10°,AQ,/Qax = —6-1072,Apg / py =107 we have kg=1, and
T =T /Ky =7,6-10"%s.

Coefficient kt can be computed with relation (18)
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kt:[a(lt] z( AQy j (Stmaxj :_( AQ, j (Xmaxj ,
8St 0 thax 0 ASt 0 thax 0 AX 0
which, for AX/ X, =107* and AQ, ! Qt max =—6-10"2 has the following value k.=6-1072.
For m=100g =10""kg,k, =1N/m,1=3,2-10"*Ns/m, X5, =1,5cm =1,5-10m and
Ser =3-1073m?, with (16) we have 1, ~0,32,&,, =0,5 and k =2-10*.

Substituting those parameters in (22) we determine coefficients as, a,, @y, 8y whose values verify

the Hurwitz stability conditions.
Going back to dimensioned relation (17) we have [5]:

o — . OG O00g — OOy 1 0Q 0Q
E(t)=| Shp  Lg _Arg _Hrg | - A AT | -
(1) [énp”aett B, " a0 ") T Qe lap AT, ),
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Upon (26), in stationary regime:

2.107°

= - ~~0,17-107°
1+2-10%-6-10

1
i .
P () =g )
and
Apg ()= Pr (%) py =0,17-107°-10° = 0,17N/m* <<10° N/m”.

Conclusions:

In the paper we presented a study upon an ARS for the cabin airflow, using a direct action regulation
system. The mathematical model for the system was written in there forms: dimensioned, dimensionless and
operational.

The stability of the system is analyzed through the calculus of its parameters.
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Summary

For an ARS of the cabin airflow with direct action we built a linearised mathematical model in there
forms: dimensioned, dimensionless and operational. Using the mathematical model, the system stability is
analyzed through the calculus of the dynamic parameters of the automatic regulation system (ARS).
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