ВЗАИМОДЕЙСТВИЕ ВОДОРОДНОЙ ПЛАЗМЫ С ПОВЕРХНОСТЬЮ РАЗЛИЧНЫХ МАТЕРИАЛОВ

Ивановский государственный химико-технологический университет, пр. Ф. Энгельса, 7, г. Иваново, 153460, Россия * Кафедра информатики и вычислительной техники **Кафедра технологии приборов и материалов электронной техники

В настоящее время в литературе практически отсутствуют сведения о вероятностях рекомбинации атомов на поверхностях различных материалов в зоне разряда, необходимые как для конструирования газоразрядных приборов, так и для понимания происходящих в разряде физико-химических процессов. Результаты, полученные для электровакуумного стекла, показали, что при воздействии разряда на поверхность вероятности гетерогенной гибели атомов на 1–2 порядка величины выше, чем соответствующие значения в области послесвечения [1].

Измерения проводились на установке, представленной на рис.1. Цилиндрический реактор внутренним диаметром 15 мм был изготовлен из стекла марки C52. Источником атомов водорода в основном состоянии $H(^2S)$ является тлеющий разряд постоянного тока в H_2 . Водород получали электрохимическим разложением воды в генераторе "Водень-1". Дополнительно газ очищали пропусканием через ловушку с жидким азотом и его чистота, контролируемая масс-спектрометром MX7304, была не ниже 0,999. Давление газа составляло 270 Па, а ток разряда изменялся в пределах 10–100 мА. В ходе эксперимента также измерялась напряженность продольного электрического поля E, температуры газа, стенки и образцов.

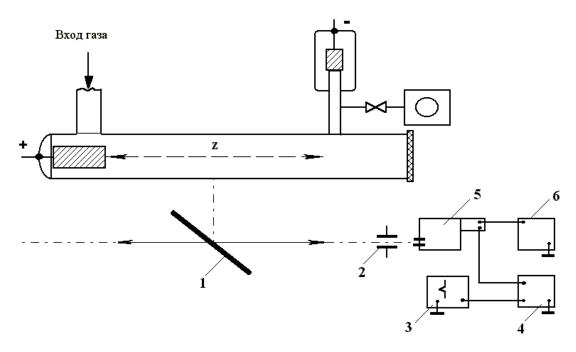


Рис. 1. Конструкция разрядной трубки для спектральных измерений: 1— подвижное зеркало; 2— диафрагма; 3— потенциометр; 4— усилитель постоянного тока; 5— монохроматор с $\Phi \ni V$; 6— источник питания $\Phi \ni V$.

[©] Галиаскаров Э.Г., Абрамов В.Л., Электронная обработка материалов, 2001, № 5, С. 71–74.

Суть методики заключается в измерении распределения концентрации атомов водорода вдоль оси положительного столба (ПС) методом эмиссионной спектроскопии. Излучение отбиралось с помощью зеркала через стенку разрядной трубки перпендикулярно оси разряда в монохроматор МДПС с фотоэлектрической системой регистрации. Относительную концентрацию атомов водорода определяли путем сравнения интенсивности излучения линии Н бальмеровской серии ($\lambda = 656,28$ нм, $E_{\text{пор}} = 12,09$ эВ) и линии аргона ($\lambda = 696,54$ нм, $E_{\text{пор}} = 13,33$ эВ) [2]. Метод наиболее прост и точен в том случае, когда регистрируемые линии обоих атомов возбуждаются только прямым электронным ударом, а их пороговые энергии возбуждения одинаковы. Наличие пространственных изменений ФРЭЭ и концентрации электронов в объеме разрядного устройства в этом случае учитываются автоматически, так как они одинаковым образом влияют на возбуждение атомов исследуемого газа и газа-добавки. Погрешность определения относительных интенсивностей составляла 20%.

В случае однородной поверхности разрядной трубки получаются типичные кинетические кривые, позволяющие найти вероятность гибели атомов на стекле в зоне разряда (рис. 2, кривая 1). Вероятность рекомбинации определяли в результате математической обработки такой кривой, основанной на решении уравнения непрерывности плотности потока атомов водорода в цилиндрической системе координат для однородной поверхности:

$$\frac{1}{r}\frac{\partial}{\partial r}\left[rD\frac{\partial n}{\partial r}\right] + \frac{\partial}{\partial z}\left[D\frac{\partial n}{\partial z}\right] - \frac{\partial}{\partial z}(V_z n) + W = 0, \tag{1}$$

где n — текущая концентрация атомов водорода; D — коэффициент диффузии; V_z — среднемассовая скорость потока, r и z — радиальная и продольная координаты соответственно; W — совокупная скорость объемных процессов. Оценка влияния объемных процессов гибели атомов водорода в условиях наших экспериментов (p = 100—400 Па) показала, что вклад этих реакций не превышает 10%, то есть основным каналом гибели атомов $H(^2S)$ следует считать гетерогенную рекомбинацию [3, 4]. Таким образом, W фактически представляет собой скорость образования атомов в условиях разряда.

Решение уравнения (1) должно удовлетворять условиям: n=n(0) при $z=0; n \to n(\infty)$ при $z \to \infty; -D \frac{\partial n}{\partial r} = 0,25 n \overline{\nu} \gamma$ при r=R и с их учетом дает следующее выражение:

$$\overline{n}(z) = \overline{n}(\infty) - (\overline{n}(\infty) - \overline{n}(0))e^{-\varphi z}, \qquad (2)$$

где n(0) — концентрация атомов на входе в зону разряда; $n(\infty)$ — концентрация атомов, определяемая как асимптота n(z) при $z \to \infty$. Величина ϕ определялась из выражения

$$\varphi = 0.5 \frac{V_z}{D} \left(\sqrt{1 + \frac{4D}{\tau V_z^2}} - 1 \right),\tag{3}$$

где $\tau = \frac{2R}{v\gamma}$ — время жизни атомов; \overline{v} — тепловая скорость атомов; R — радиус трубки; γ — вероятность гетерогенной гибели атомов.

Предварительные измерения показали, что характерное время радиальной диффузии по крайней мере на порядок величины меньше τ , а изменением среднемассовой скорости, связанным с диссоциацией, можно пренебречь. Поэтому при выводе уравнения (1) мы пренебрегли зависимостями концентрации n от радиуса и V_{τ} от продольной координаты.

Полученные выше соотношения позволяют на основании измерений определить кинетические характеристики взаимодействия атомов с материалом в зоне плазмы при условии, что вся поверхность реактора выполнена из данного материала. В то же время как объекты исследования представляют интерес и материалы, изготовление реактора из которых технологически невозможно. Для таких материалов нами была разработана методика измерений, базирующаяся на следующих соображениях. Помещение образца в область положительного столба должно приводить к изменению распределения концентрации атомов по его длине, обусловленному различиями в вероятностях гетерогенной гибели атомов на испытуемом материале и материале стенки реактора. Можно ожидать,

что концентрация атомов в зоне образца окажется меньше, чем в его отсутствие, если вероятность гетерогенной гибели на испытуемом материале выше, чем на материале стенки, и наоборот. Типичное распределение концентрации атомов, полученное методом эмиссионной спектроскопии, представлено на рис. 2 (вставка). Наличие материала с более высокой (в данном случае) вероятностью гибели приводит к тому, что в исходно равномерном распределении концентрации атомов появляется «провал» симметричный в случае, когда поток газа отсутствует, и асимметричный — при наличии потока. Длина области «возмущения» концентрации z_4 – z_1 превосходит ширину образца z_3 – z_2 и определяется возможностями транспорта атомов (диффузией и переносом потоком газа). Проводя усреднение уравнения непрерывности плотности потока атомов по сечению реактора, интегрируя его по зонам z_1 – z_2 , z_2 – z_3 , z_3 – z_4 и «сшивая» потоки в точках z_2 и z_3 , получим следующее соотношение:

$$\gamma_{M} = \frac{\gamma_{C}}{A} \left[-(\infty)(z_{4} - z_{1}) - \int_{z_{1}}^{z_{4}} -(z) dz \right] / \int_{z_{2}}^{z_{3}} -(z) dz,$$
 (4)

где γ_M , γ_C — вероятность гетерогенной гибели атомов на испытуемом материале и материале стенки реактора; $n(\infty)$, n(z) — стационарная и текущая концентрации атомов; A — доля окружности трубки, занимаемая кольцевым образцом (замкнутое кольцо A=1); z — координата, отсчитываемая от входа газа в разрядную зону.

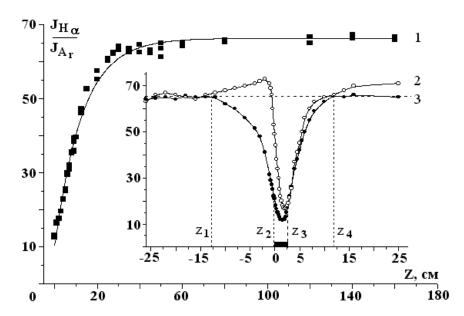


Рис. 2. Распределение относительной концентрации атомов водорода вдоль оси положительного столба: 1 — в отсутствие образца, поверхность однородная; 2 — в присутствии образца, скорость потока максимально возможная; 3 — в присутствии образца, скорость потока ограничена.

Вероятность гибели $H(^2S)$ в области положительного столба тлеющего разряда на поверхности различных материалов. Давление газа 266 Πa

Тип материала	Ток разряда,	Температура поверхности	γ, 10 ⁻⁴		
	мА	материала, К			
	10	305	1.01	±	0.20
	25	325	1.10	\pm	0.20
Стекло С-52	50	350	1.30	\pm	0.26
	75	380	1.63	+	0.40
	100	405	2.09	<u>+</u>	0.45
Керамика (алунд)	50	350	7,5	±	1,5
Керамика 22ХС	50	350	18	±	3,6
Германий	50	353	17	±	3,4

Кремний	50	355	38	±	7,6
Ниобат лития	50	350	45	±	9
Поликорунд	50	350	90	±	18
Лавсан	15	315	130	±	26
Полиимид	15	315	160	±	32
Никель	50	370	300	±	60
Тантал	50	370	400	±	80
Титан	50	375	500	±	100
Графит	50	380	650	±	130
Алюминий	50	380	700	±	140

Экспериментально были определены оптимальные размеры образцов, при которых измерения проводились бы с достаточной точностью, а результаты не зависели от площади образца при изменении ее до 20 раз. Поверхность металлических образцов перед измерениями механически шлифовалась, протиралась этиловым спиртом и подвергалась воздействию разряда в водороде в течение одного часа [5].

Результаты измерений сведены в таблицу. Полученные значения вероятности рекомбинации могут быть использованы для расчетов процессов, происходящих с атомами водорода в газоразрядных приборах с водородсодержащим наполнением и выполненных с применением исследованных материалов.

ЛИТЕРАТУРА

- 1. *Абрамов В.Л.*, *Бровикова И.Н.*, *Галиаскаров Э.Г.* Рекомбинация атомов водорода на поверхности кварцевого и электровакуумного стекла // Физика и химия обработки материалов. 1993. № 3. С. 87–91.
- 2. Светцов В.И., Рыбкин В.В., Чеснокова Т.А. Концентрация атомов в тлеющем разряде в водороде при пониженных давлениях // XBЭ. 1988. Т. 22. № 6. С. 526-531.
- 3. *Бровикова И.Н.* Диссоциация неорганических молекул и рекомбинация атомов в неравновесной газоразрядной плазме // Дис. канд. хим. наук. Иваново, 1980.
- 4. Словецкий Д.И. Механизмы химических реакций в неравновесной плазме. М., 1980.
- 5. Абрамов В.Л., Афанасьева Н.В., Лохова М.Н., Светцов В.И. Спектральные исследования очистки титана в тлеющем разряде // Научно-технический сборник «Электронная техника». 1990. Вып. 7/252/ДСП. С. 77-78.

Поступила 09.01.2001.

Summary

The technique of definition of hydrogen atom H (²S) loss probability on a surface of various materials by a radiation spectroscopy method is offered. The results for atom loss probability in a plasma zone (d.c. glow discharge, pressure 270 Pa) for a number of materials used in electronic industry are received.