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1. Introduction 
Micro channel technology has important applications in Bio-MEMS. An understanding of the 

microscopic transport phenomena in micro capillaries is vital to the design and process control of various 
fluidic devices. A survey of literature on micro channel research indicates that progress has been made 
steadily towards the understanding and the of micro channels behavior. These include, for examples, micro 
channels in a form of an infinite parallel plate [3] and rectangular micro channels [4, 5, 6].  The effects of the 
electrical potential on the liquid transport in a tiny cylindrical capillary have also been studied by Rice and 
Whitehead [7]. Their work is extended by Levine for developing micro transport models suitable for higher 
zeta potential [8]. Recently, Mala has indicated that, in micro scale flow, the interfacial electrokinetic effects 
associated with the electrical double layer (EDL) must be considered when the hydraulic radius of the flow 
channel is of comparable to the thickness of the EDL [3, 4]. 

Traditionally, the Debye-Huckel length has been used as a measure of the EDL thickness [1, 5].  
There is however, reservation about this interpretation in micro capillaries.  This is because Debye-Huckel 
length is originally derived to represent the effective size of ionic atmosphere for an ion, which gives an 
indication of the distance between the central ion and its surrounding charges in the ionic atmosphere.  The 
EDL originating from the zeta potential at the solid-liquid interface in a micro capillary might have a 
different thickness.  Hunter has suggested the EDL thickness at the solid-liquid interface is in the order of 3 
to 4 times that of the traditional definition but no evidence was given.  It is the objective of the present study 
to introduce a coefficient, which can be conveniently selected to define the region of EDL quantitatively.  
The study could be used to support Hunter's suggestion with theoretical ground. 

 
2. The electrical double layer model  
It is known that most of solid surfaces carry electrostatic charges, which give rise to an 

electrical surface potential.  Electrical charges are also inevitably present in the liquid solution, for 
instance due to impurities or intentionally applied.  The electrical charges on the solid surface will 
attract the counter-ions in the liquid.  The arrangement of the charges on the solid surface and the 
balancing charges in the liquid is called the electrical double layer [1, 2].  Fig. 1 shows the structure 
of an EDL in accordance with the Gouy-Chapman theory with an excess of ions of opposite sign 
established on the wall.  There are two layers in an EDL, a compact layer and a diffuse layer [1].  
The separation boundary between these two layers is called the outer Helmholtz plane (OHP) where 
the diffusive layer begins and extends into the solution phase. The OHP is the plane of closest 
approach of ions in the solution and thus represents the effective location of the solid/liquid 
interface.  The electrical potential at this plane is called the zeta potential, which characterizes the 
diffusive part of EDL.  Comparing to the compact layer, the diffuse layer covers most of the EDL 
region and has a detrimental effect on micro capillary performance as well as on the behavior of 
solution.  The compact layer is normally in the order of 0.5 nm thick [1, 2].  It is assumed to be  a 
charge-free  region  where  ions  are strongly  oriented and are confined to the wall surface. As a 
result, ions are immobile in the compact layer and are not able to react to an applied electric field.   
_______________________________________________________________________________________ 
 Tou S. K. W., Guo X. B., Электронная обработка материалов, 2001, № 4, С. 47–57. 
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In the diffuse layer, ions are affected by the local equilibrium of electrostatic potential and 
are mobile. The thickness of EDL mainly depends on the electrical potential of the solid surface, the 
bulk ionic concentration and the properties of the liquid. It ranges typically from tens of nanometers 
to several hundreds of nanometers [1, 2]. 

 
 

Fig. 1. The structure of an electrical double layer. 
 

Zeta potential and EDL have close relation with respect to the distribution of net charge density in 
the solution.  Consider a micro capillary of radius R0 in cylindrical coordinate.  Due to axis-symmetry of the 
circular geometry, the electrical potential can be assumed to vary in the radial r-direction and is uniform in 
the z-direction. The relationship between the electrical potential,  and the net charge density per unit 
volume, e at any point in the solution can be described by the Poisson equation as follows [1]: 
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where r and 0 are the dielectric constant of the fluid and permittivity of vacuum.  The number of ions per 
unit volume, n is assumed to be given by the Boltzmann distribution as follows [1]: 
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where e and kb are the electron charge and Boltzmann constant respectively.  n0 is the bulk concentration of 
ions per unit volume.  T is the solution absolute temperature and Ze is the valency of ion.  The Boltzmann 
distribution is generally valid if the fluid flow in the micro capillaries has a very small Peclet number or in a 
fully developed hydrodynamic state [3]. The net charge density per unit volume is then given by the 
difference between symmetric cations and anions. 
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Substituting Eq. (3) into Eq. (1), the well-known Poisson-Boltzmann equation is obtained: 
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By introducing the following non-dimensional groups together with the Debye-Huckel length, 
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respectively.  D0 is the capillary diameter. 
Eq. (4) can be written in non-dimensional form as: 
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The reciprocal of Debye-Huckel length (1/K) is normally referred to as the thickness of the electrical 

double layer.  It describes the effect due to spatial variation of charge distribution originated from the zeta 
potential.  It is assumed that the zeta potential is small as compared to the thermal energy of the ions in the 
solution, i.e., 

TkeZ be  , and thus  V01.0 , with Ze  = 2. 

This is generally valid for low concentration solutions in which diffusion transport is of secondary important.  
This approach is known as the Debye-Huckel approximation with which the electrical potential governing 
equation can be simplified as: 
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Consider axis-symmetry and that the compact layer is much thinner than the effective EDL thickness, i.e. 

0RsDLthicknesEffectiveEd  .  The following boundary conditions are specified: 
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where d and R0 are the compact layer thickness and capillary radius respectively.  The non-dimensional zeta 

potential is defined as: 
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  , where 0  is the zeta potential at the OHP boundary. 

The electrical potential distribution along the capillary radius can be obtained by solving the above 
governing equation using the power series method.  Assuming the solution can be represented by a power 
series of the following form: 
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the following solution is obtained: 
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The above can be written in terms of the relative electrical potential,  defined as: 
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3. Results and analyses 

 
3.1. The effects of non-dimensional Debye-Huckel length 

 
It can be seen from the EDL model that the non-dimensional Debye-Huckel length,  is an important 

parameter controlling the electrical potential distribution in the solution and is of influential to the 
performance of the micro capillaries.  Based on Eq. (8), the relationship between the relative electrical 
potential and the non-dimensional radius for various values of  is shown in Fig. 2.  It can be found that the 
electrical potential decreases rapidly in the region close to the capillary wall.  As  increases, the spatial rate 
of change of electrical potential also increases and the EDL boundary is getting closer and closer to the wall.  
The charge density per unit area at the interface will also increase since it is proportional to the electrical 
potential gradient.  As the EDL region is reduced, the effects of EDL are expected to diminish.  Such a 
process is generally referred to as compression of EDL.  Thus, from the capillary operation and performance 
point of view, a large  is desirable to suppress the electro-kinetic effects. 
 

 
 

Fig. 2. The distribution of relative electrical potential along radial direction for various non-dimensional            
D-H length.  
 

The non-dimensional Debye-Huckel length also describes the relation between the solution 
concentration and capillary size as depicted by the following expression: 
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where Na is the Avogadro number. 

 
 
Fig. 3. Relation between tube diameter and solution concentration for various non-dimensional D-H length. 
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This relationship is illustrated in Fig. 3. This figure provides useful information in the 
design/selection of capillary size and solution concentration to meet with the requirements set by the non-
dimensional Debye-Huckel length.  This will help to warrant the capillary performance as the electro-kinetic 
effects are suppressed when a large  can be implemented. 

 
3.2. The effects of capillary diameter 
Assuming low concentration, e.g. =1.0e-3 (mM), Fig. 4 shows the relative electrical potential 

distribution along the capillary radius as the diameter changes from 10 m to 100 m. 
 

 
 

Fig. 4.  Relative electrical potential distribution along tube radius as a function of diameter. 
 

Similar to Fig. 2, Fig. 4 also shows a rapid variation of relative electrical potential near the capillary 
wall.  For a given solution concentration, the electrical potential changes rapidly as the diameter increases 
and is confined within a very thin layer.  It also can be observed from the same figure that the electrical 
potential is influential to the micro capillary performance when the capillary diameter is getting smaller   
(<20 m).  For example, the EDL region covers about 30% of the capillary radius when D0 = 10 m and            
=1.0e-3 (mM). This observation agrees with the Mala's finding that electrokinteic effects must be 
considered when the tube sizes reduce to this order of magnitude [3, 4]. 

3.3. The effects of solution concentration 
Assuming a fixed capillary diameter, e.g. D0 = 50 m, the relative electrical potential distribution 

along the radius is shown in Fig. 5 with solution concentration varies from 1.0e-4 (mM) to 2.0e-3 (mM). 
 

 
 

Fig. 5. Relative electrical potential distribution along the capillary radius at various concentration levels. 
 

From Fig. 5, it is noted that the relative electrical potential also varies greatly near the capillary wall.  
For a given capillary diameter, with higher concentration, the greater the spatial rate of change of electrical 
potential occurs and the EDL is closer to the wall. This also leads to compression of EDL. On the other hand, 
when the solution concentration is getting lower (< 0.0001 mM), the electrical potential in the EDL becomes 
influential to the micro capillary performance and the behavior of the solution. This observation agrees with 
the results from other researchers [1, 2, 3, 4]. 
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From the above results, it can be said that the rapid change of electrical potential near the capillary wall is a 
unique feature of the interfacial phenomenon in micro capillaries. This reveals strong interaction at the 
solid/liquid interface. 
 

4. Assessment of EDL thickness 
 

Traditionally, the thickness of EDL is characterized by the reciprocal of Debye-Huckel length, which 

can be expressed as 

1

 in non-dimensional form.  This parameter has been generally used as a measure of 

EDL thickness.  Because the compact layer is much thinner than that of the diffuse layer, 

1  represents 

mainly the thickness of the diffuse layer.  However, this is not an adequate representation of the effective 
thickness of EDL because the zeta potential does require a finite distance to decrease its value to that of the 
solution.  These phenomena have been depicted in Figs. 2, 4 and 5 inclusively.  For examples, the relative 

electrical potential is equal to 36.8% of its maximum value if the thickness of EDL is considered to be 

1 .  

When the relative electrical potential equals to 5% of its maximum value, the thickness of EDL will extend 

to three times of 
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 ( or 

3

).  Therefore, 
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1  covers only a small portion of the EDL region.  It is necessary 

to introduce a numerical coefficient, C to extend the traditional EDL thickness from 
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 to 
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C
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By applying Eq. (8) at the outer Helmholtz plane, located at 

C

R  50. , and selecting a specific 

value of interest for the relative electrical potential at this artificial cut-off boundary, one has: 
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For a given relative electrical potential at cut-off boundary, the above expresses the relation between the 
coefficient C and  and is depicted in Fig. 6. 
 

 
Fig. 6. Variation of coefficient C with non-dimensional D-H length at different relative electrical potential: 

1  =0,01%; 2 – 0,05%; 3 – 0,1%; 4 – 0,5%; 5 – 1%.  
 

It can be found from Fig. 6 that the coefficient C depends on the relative electrical potential selected 
at the cut-off boundary but is independent of the non-dimension D-H length. It is also of interesting to 
examine the relationship between the coefficient C and the tube diameters as well as the solution 
concentration.  These are shown in Figs. 7 and 8 respectively. The coefficient  C remains unaltered no matter 
what value of the capillary diameter or the solution concentration is chosen.  In this respect, the coefficient 
can be regarded as a universal constant, which defines the effective EDL thickness when the relative 
electrical potential at cut-off boundary is chosen. 
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Fig. 7. Variation of coefficient C with capillary diameter at different relative electrical potential                   
( =0,001 mM): 1 – =0,01%; 2 – 0,05%; 3 – 0,1%; 4 – 0,5%; 5 – 1%. 
 

 
 

Fig. 8. Variation of coefficient C with solution concentration at different relative electrical potential          
(D0 =50 m): 1 – =0,01%; 2 – 0,05%; 3 – 0,1%; 4 – 0,5%; 5 – 1%.    
 

 
 

Fig. 9. Variation of coefficient C with the relative electrical potential at EDL cut-off boundary. 
 

Fig. 9 shows the coefficient C as a function of the relative electrical potential at cut-off boundary.            
C increases as the electrical potential at EDL boundary cut-off is reduced.  In general, the coefficient C can 
be determined by the following expression, which is obtained by curve-fit from Fig. 9. 
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The EDL boundary can be conveniently defined by selecting a suitable relative electrical potential at 

the cut-off point.  This is an artificial boundary separating the EDL from the solution. With reference to       
Fig. 9, it is suggested to apply 1% relative electrical potential as the cut-off boundary. This yields C = 4.7 for 
1% cut-off. The effective thickness of EDL is about 4.7 times bigger than the traditional value, which 
corresponds to C  = 1. Table 1 shows a comparison of the EDL cut-off point between the newly defined EDL 
effective thickness and the traditional one.  The same is also illustrated graphically in Fig. 1. The 36.8% of 
relative electrical potential as the cut-off boundary for the traditional thickness are too high to be acceptable.  
This does not appear to be an adequate representation of the effective EDL thickness. Instead, the tradition 
thickness should be interpreted as the characteristic thickness of EDL. Hunter has suggested that the EDL 
region extends to the order of 3/K ~ 4/K from the wall [1, 2]. This corresponds to C = 3 or C = 4 and is in 
close agreement with the present study (C = 4.7). 

 
Table 1. Comparison of effective EDL thickness and traditional one 
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As an example, consider a capillary diameter, D0 =50 m, solution concentration  = 0.001 mM and 

at a temperature of 298 K. This leads to K = 3.2 m-1 and  = 160.  The non-dimensional EDL effective 
thickness can also be expressed as: 
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From above, the non-dimensional traditional EDL thickness and effective EDL thickness will be equal to 
0.006, with C = 1 and 0.029, with C = 4.7 respectively.  Based on 1% relative electrical potential cut-off, the 
effective EDL thickness will cover 5.8% of the capillary radius.  That is to say one is able to limit the effects 
of EDL within 5.8% of the capillary radius. This shows that the non-dimensional Debye-Huckel length is 
indeed a parameter of prominent significance in EDL theory as well as in the practical operation of micro 
capillaries. 
 

5. Conclusion 
 

The study shows that the distribution of electrical potential in the EDL is mainly determined by the 
non-dimensional Debye-Huckel length, . A suitable value of   can be chosen to limit the effects of EDL.  
This aids in selecting a suitable capillary diameter and solution concentration to warrant the capillary 
performance. 

The EDL thickness and the effects of EDL at the solid-liquid interface are also analyzed in this work.  
A coefficient C, being independent of , is introduced to define the effective EDL thickness. It is suggested 
to apply 1% relative electrical potential as the cut-off point for the EDL boundary giving rise to a value of            
C = 4.7. The results show that the effective EDL thickness is 4.7 times greater than that of the traditional 
definition and are in close agreement with Hunter's suggestion (3~4). 

The study reveals that the tradition EDL thickness corresponds to C = 1.  It is suggested to interpret 
it as the characteristic thickness of EDL. 
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Appendix 
 
Series solution to the potential 

In simplified two dimension modeling, zeta potential can be expressed as: 
     

                                       21
( ) .R

R R R

 
  

 
                                                                (9) 

 
Boundary conditions: 

          
00
0   R 0       0               and            .

h

RΨ
at , R    ,         Ψ ζ

R D


   


 

By defining: 

                                                       
n

n
nRa






0
                                                                        (10) 

 
following equations can be developed: 
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Equation(1) can then be written in series as: 
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From equation (22) coefficient can be obtained: 
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Using above coefficient expression, equation(21) cab be written as 
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Considering that  D0<<L, 
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By defining  
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zeta potential equation(7) will be written as: 
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Above given the whole zeta potential series expression. 

Considering a fully developed flow of an aqueous 1:1 electrolyte (the KCl solution) through the 
capillary, the following parameters can be obtained in table 2. 
 
Table 2   
 Relevant parameters 

Parameter Value Description 
kb 1.38e-23(J K-1) Boltzmamm constant 
0 8.85e-12(C2 N-1 m-2) permittivity of vacuum 
Ze 1 number of the valence of ions 
E 1.60e-19(C) electron charge 
T 298(K) absolute temperature 
 78.5 dielectric constant of solution 

 
Nomenclature 
 
an    power series coefficient 
d    distance of OHP plane from the tube wall (m) 
D0    capillary diameter (m) 
e    electron charge (C) 
kb    Boltzmamm constant (1.381023J K-1) 

K     Debye-Huckel length (
Tk
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 ) (m-1) 

n    number of ions per unit volume (m-3) 
n0    bulk concentration of ions per unit volume (m-3) 
Na    Avogadro number 
R0    capillary radius (m) 
R    non-dimensional radius 
T    solution absolute temperature (K) 
Ze    valency of ion 
r, , z               cylindrical coordinate (r,  and z ) 
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Greek symbols 
 
    bulk solution concentration (mM) 
e    net electric charge density per unit volume on channel wall (C m-3) 
    electrical potential (V) 
0    zeta potential at the OHP boundary between the diffuse layer and the  

compact layer (V) 

0
0     non-dimensional zeta potential (

T
b

k

e
e

Z 00
0


  ) 

    non-dimensional electrical potential 
    relative electrical potential ( = 0

0/ ) 

r    dielectric constant of the fluid 
0    permittivity of vacuum (8.8510-12C V-1 m-1) 
    non-dimensional Debye-Huckel length ( KD0 ) 
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Summary 

 
The thickness and the effects of electrical double layer on micro capillaries are analyzed in 

the present study. The distribution of the electric potential in the double layer is first determined by 
solving the Poisson-Boltzmann equation in cylindrical coordinates using the power series method. 
A definition for the double layer effective thickness is introduced based on 1% relative electrical 
potential at the artificial cut-off boundary. In this approach, a coefficient, being independent of the 
non-dimensional Debye-Huckel length, is introduced and is applied successfully to assess the 
double layer effective thickness at the solid-liquid interface. The results show that the double layer 
effective thickness is 4.7 times greater than that of the traditional value based on the thickness of the 
ionic atmosphere at the ion-liquid interface. The results appear to be in close agreement with 
Hunter's suggestion.  Example is also given to illustrate the applications of the present study. 

 
 
 
 


