Процессы преобразования энергии при высоковольтном электрохимическом взрыве в ограниченных объемах

А. И. Вовченко, *Л. Ю. Демиденко, И. Н. Старков

Институт импульсных процессов и технологий НАН Украины, пр. Богоявленский, 43-A, г. Николаев, 54018, Украина, *e-mail: dpt@@iipt.com.ua, e-mail: iipt@iipt.com.ua

На основании проведенных целенаправленных экспериментальных исследований энергетических характеристик высоковольтного электрохимического взрыва (ВЭХВ) в ограниченных объемах впервые предложено и обосновано использование обобщенного параметра γ , учитывающего характеристики ограниченного объема, который наряду с электрофизическими величинами E_0 и ω_{τ} определяет величину удельной энергетической эффективности μ экзотермического состава при ВЭХВ в ограниченных объемах, то есть $\mu = f(\omega_{\tau}, E_0, \gamma)$. Установлена универсальная зависимость относительной величины удельной энергетической эффективности μ/μ_0 выбранного экзотермического состава при ВЭХВ в ограниченном объеме от обобщенного параметра γ , которая может быть использована при расчете комбинированного энергоисточника применительно к требованиям конкретной технологии.

Ключевые слова: разрядно-импульсные технологии, высоковольтный электрохимический взрыв, камера ограниченного объема, парогазовая полость, датчик эффективности силового воздействия, прогиб пластины.

УДК 532:537

ВВЕДЕНИЕ

В последнее время высоковольтный электрохимический взрыв (ВЭХВ) [1], комплексный процесс взрывного преобразования в разрядном канале электрической и химической энергий, находит все более широкое практическое применение в разрядно-импульсных технологиях (РИТ) (например, разрушение, формообразование, генерирование низких звуковых колебаний и т.п.). ВЭХВ реализуется при введении в плазменный канал элетровзрыва веществ, способных к экзотермическим превращениям в режиме взрывного горения, под действием высоких температур и давлений в разрядном канале. Применение вэхв различных РИТ позволяет в отличие от традиционного электровзрыва значительно расширить возможности управления силовыми характеристиками, воздействующими на объект обработки с одновременным повышением ресурса электрооборудования.

Иссследования характеристик ВЭХВ влияние их на интенсификацию работы электроразрядных установок рассмотрены в ряде работ [1-4]. Однако эти исследования в основном электроразрядных высоковольтных касались систем, использующих ВЭХВ в открытых камерах больших размеров (условное название «безграничный объем»), и способов управления вэхв. характеристиками этих Однако, учитывая, что во многих РИТ [5-7] ВЭХВ осуществляется в ограниченных замкнутых, «малых объемах» жидкости, причем часто

определение условий, которые гарантированно обеспечивали бы наиболее высокую эффективность преобразования энергии ВЭХВ в разных конкретных технологиях, имеет не только научный интерес, но и практический. Поэтому актуальны поиск таких условий и их аналитическое представление.

Результаты численных экспериментов по исследованию гидродинамических ристик как при высоковольтном электрическом разряде (ВЭР) [8], так и при ВЭХВ [9] в замкнутых цилиндрических разрядных камерах показывают, что размеры последних существенно влияют на процессы в них. Причем на эти процессы оказывают влияние не столько абсолютные размеры ограниченных объемов, сколько соотношение объема камеры V_k (м³) к объему послеразрядной парогазовой полости V_p (м³) при ее пульсации в безграничном объеме [10]. В дальнейшем для удобства, как в упомянутой уже работе [10], это соотношение V_k/V_p обозначено как обобщенный безразмерный параметр $\gamma = V_k/V_p$.

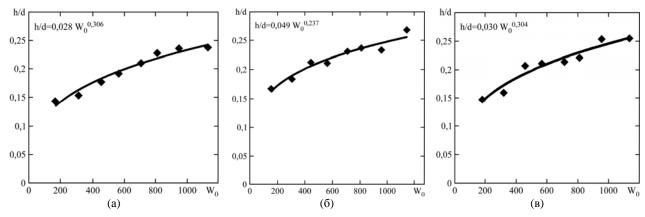
МЕТОДОЛОГИЯ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ И РАСЧЕТОВ

Цель данной работы — экспериментально исследовать процессы преобразования энергии при ВЭХВ в ограниченных объемах для определения влияния характеристик ограниченного объема на энергетическую эффективность протекания химических реакций при ВЭХВ в указанных условиях.

Степень этого влияния может быть оценена путем сравнения с неким базовым вариантом, за который вполне логично принять ВЭХВ в безграничном объеме, наиболее полное обобщерезультатов исследований которого представлено в работе [1]. Так, при решении задачи оптимизации характеристик ВЭХВ в безграничном объеме установлено, что для алюминийсодержащих водонаполненных экзотермических составов (B3C) основными электрофизическими факторами, определяющими удельную энергетическую эффективность цо, являются средняя напряженность электрического поля в разрядном промежутке E_0 и удельная электрическая энергия, выделившаяся в единице массы ВЭС, ω_{τ} . В данной работе при реализации ВЭХВ в ограниченном объеме в качестве объективного критерия высвобождения потенциальной химической энергии, по аналогии с ВЭХВ в безграничной среде, использовалась величина удельной энергетической эффективности сгорания ВЭС µ. Поскольку в работе [1] по результатам исследований нескольких разных вариантов ВЭС определено, что больше всего тепловой энергии выделяется в том случае, когда он состоит из 60% порошка алюминия (из них 15% составляет пудра) и 40% окислителя, то все дальнейшие исследования проводили именно с этим фиксированным экзотермическим составом.

Экспериментальные исследования при ВЭХВ ограниченном объеме осуществляли разрядной камере при изменении ее объема в пределах от $0.79 \cdot 10^{-3}$ до $1.6 \cdot 10^{-3}$ м³. Согласно данным работы [8], в камерах исследуемого объема в случае ввода в разрядный канал электрической энергии и энергии, получаемой при сгорании алюминиевой пудры (продолжительность прогрева которой составляет 10^{-8} порядка [11]), c создается давление, самоподдернеобходимое для протекания живающейся экзотермической реакции порошка алюминия, которое для ВЭС с 60% содержанием составляет 22,5 МПа [1].

По аналогии с подводным высоковольтным электрическим разрядом (ВЭР) [10] на первом этапе изучали зависимость удельной энергетической эффективности ВЭС при ВЭХВ в различных ограниченных объемах от обобщенного параметра γ при постоянных значениях основных электрофизических факторов ω_{τ} и E_0 .


На втором этапе исследовали влияние основных электрофизических факторов ω_{τ} , E_0 и обобщенного параметра γ на зависимость удельной энергетической эффективности ВЭС при ВЭХВ в различных ограниченных объемах.

При ВЭХВ в ограниченных объемах исследования зависимости удельной энерге-

тической эффективности и от обобщенного проводили параметра γ изменении запасаемой энергии от 250 до 750 Дж, что соответствующим достигалось изменением емкости конденсаторной батареи С. Величина начального напряжения U_0 при этом оставалась постоянной, равной $U_0 = 20.10^3$ В. Масса ВЭС, вводимого в разрядный промежуток, изменялась в диапазоне от 0,1 до 0,3 г, длина разрядного промежутка \underline{l} не менялась и была равна $3 \cdot 10^{-2}$ м. При принятых начальных условиях величина удельной электрической энергии ω_{τ} и величина напряженности E_0 в экспериментах оставались неизменными, равными соответственно $2,5 \cdot 10^6$ Дж/кг и $0,67 \cdot 10^6$ В/м. В качестве объекта обработки и одновременно датчика эффективности силового воздействия в экспериментах по аналогии с работой [10] использовалась тонкая круглая свободно деформируемая мембрана из меди М1, жестко защемленная по контуру по величине максимального прогиба, в центре которой можно судить об эффективности силового воздействия.

В данной работе принятая методология обшей энергии определения химической энергии при ВЭХВ в ограниченных объемах заключается в том, что по величине относительного прогиба h/d (где h – величина максимального прогиба, мм; d – диаметр отверстия матрицы, мм), обусловленного силовым воздействием при ВЭХВ в закрытых камерах разных объемов, определялась суммарная (общая) энергия ВЭХВ. По электродинамическим характеристикам i(t)И определялась электрическая энергия, выделившаяся в канале разряда, W_{τ} , обеспечившая инициирование экзотермического состава. Для получения объективного критерия полноты высвобождения химической потенциальной энергии ВЭС В ограниченных объемах необходимо из общей энергии ВЭХВ вычесть часть, которая обусловлена выделением в канале электрической энергии емкостного накопителя, и отнести полученную разность к массе используемого ВЭС. Это и будет удельная энергетическая эффективность ВЭС при ВЭХВ в ограниченных объемах ц.

Следует отметить, что применить описанную методологию возможно при наличии так называемых тарировочных графиков, представляющих собой зависимость величины относительного прогиба h/d мембраны от энергии, выделенной в канале разряда при подводном ВЭР для камер разных объемов. Эти графики должны соответствовать конкретным геометрическим параметрам разрядной камеры, мембранного датчика и материала мембраны.

Рис. 1. Зависимости величин относительного прогиба мембран от энергии разряда: (a) $-V_{\kappa}=1,6\cdot 10^{-3}\,\mathrm{m}^3$; (б) $-V_{\kappa}=1,06\cdot 10^{-3}\,\mathrm{m}^3$; (в) $-V_{\kappa}=0,79\cdot 10^{-3}\,\mathrm{m}^3$.

Таким образом, при реализации ВЭХВ в ограниченных камерах разных объемов по величине относительного прогиба мембраны и соответствующему тарировочному графику (или аппроксимирующей зависимости) определяется общая энергия ВЭХВ. Затем из нее вычитается электрическая энергия, обеспечившая инициирование экзотермического состава, и по полученному таким образом значению химической энергии и массе используемого ВЭС определяется доля сгоревшего состава.

Для построения тарировочных графиков была проведена серия экспериментов с электроразрядом, инициируемым микропроводником, для камер разных объемов при изменении запасенной энергии W_0 в диапазоне от 125 до 1250 Дж с числом повторения опытов в каждой точке не менее трех. По результатам проведенных экспериментов построены графики зависимости величины относительного прогиба мембран от выделившейся в канале разряда энергии для камер разных объемов, представленные на рис. 1.

На рис. 1 показана проведенная аппроксимация экспериментальных данных (обозначенных точками) соответствующими степенными зависимостями.

Для определения значений обобщенного параметра γ вначале рассчитывали максимальный объем парогазовой полости (ПГП) V_{max} при ВЭХВ в безграничном объеме, используя подход, изложенный в работе [12]. При условии:

$$(W_{\tau}/l) > 1 кДж/м,$$
 (1)

где W_{τ} — величина электрической энергии, выделившейся в канале разряда, при ВЭХВ, Дж; l — длина межэлектродного промежутка, м, геометрическая форма $\Pi\Gamma\Pi$ — в основном сфера, соответственно расчет выполнялся для нее.

Выделившаяся в канале ВЭХВ электрическая энергия W_{τ} рассчитывалась по экспериментально регистрируемым ампер- и вольт-секундным характеристикам разрядов i(t) и U(t):

$$W_{\tau} = \int_{0}^{\tau} i(t)U(t)dt, \qquad (2)$$

где τ – длительность разряда, с.

Долю энергии ПГП ВЭХВ $W_{\mathfrak{I}}$, обусловленную выделением электрической энергии $W_{\mathfrak{t}}$, определяли из соотношения:

$$W_3 = W_{\tau} \cdot \eta_1, \tag{3}$$

где η_1 — коэффициент преобразования электрической энергии W_{τ} в энергию ПГП, который определяется по эмпирической зависимости, полученной в результате аппроксимации экспериментальных данных [12]:

$$\eta_1 = 0.26 \exp(-2/3\beta) + 0.14,$$
 (4)

где β — безразмерный обобщенный параметр, характеризующий форму ПГП,

$$\beta = (W_z / P_0)^{1/3} \cdot l^{-1}. \tag{5}$$

Для определения высвобождающейся химической энергии при ВЭХВ в безграничном объеме, согласно [1], использовали соотношение:

$$\Delta W = \mu_0 \cdot M \,, \tag{6}$$

где μ_0 — удельная энергетическая эффективность экзотермического состава при ВЭХВ в безграничном объеме, Дж/кг; M — масса экзотермического состава (ЭС), кг.

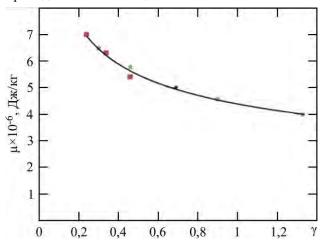
Суммарная расчетная энергия ПГП W_{cp} , обусловленная выделением электрической энергии при ВЭХВ W_{\circ} и тепловой ΔW , выделяющейся в результате сгорания ЭС, определялась по выражению:

$$W_{cp} = W_{9} + \Delta W. \tag{7}$$

По величине суммарной энергии W_{cp} определяли максимальный радиус ПГП α_{\max} из соотношения [12] и соответственно максимальный объем парогазовой полости V_{\max} :

$$a_{\text{max}} = \alpha \left[0,26 \cdot \exp\left(-\frac{2}{3} \cdot \frac{l \cdot P_0^{1/3}}{W_{cp}^{1/3}}\right) + 0,14 \right]^{\lambda},$$
 (8)

^{*} В проведении экспериментальных исследований принимали участие ведущие инженеры ИИПТ НАН Украины А.Д. Блащенко, Е.К. Гнатенко, Е.П. Разменов.

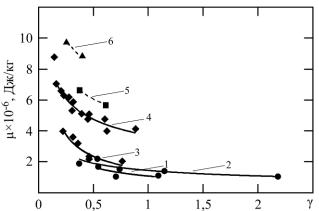

где α_{\max} — условный радиус, который имела бы ПГП при подводном электровзрыве с энергией, равной рассчитанной по (7), м; P_0 — гидростатическое давление на глубине пульсации ПГП, Па; α , λ — параметры, зависящие от геометрической формы ПГП, для сферы:

$$\alpha = \left(\frac{3}{4\pi} \cdot \frac{W_{cp}}{P_o}\right)^{1/3}, \ \lambda = 1/3. \tag{9}$$

АНАЛИЗ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТОВ И РАСЧЕТОВ

В соответствии с методологией, приведенной выше, по величине относительного прогиба мембраны при реализации ВЭХВ в различных камерах ограниченного объема и соответствующей этому объему аппроксимирующей зависимости вычисляли величину общей энергии ВЭХВ W_n . Вычитая из последней величину выделившейся при ВЭХВ электрической энергии W_{τ} , определяли величину дополнительного энерговыделения ΔW , соответствующую вкладу тепловой энергии ВЭС, и, наконец, величину удельной энергетической эффективности μ ВЭС при ВЭХВ в разных объемах.

Результаты расчетов для характеристик ВЭХВ от величины обобщенного параметра γ для камер разных объемов приведены в таблице. На рис. 2 показана зависимость $\mu = f(\gamma)$, построенная на основе экспериментальных и расчетных данных, приведенных в таблице.


Рис. 2. Зависимость удельной энергетической эффективности μ ВЭС при ВЭХВ в разных ограниченных объемах от обобщенного параметра γ . $\blacksquare - V_\kappa = 0.79 \cdot 10^{-3} \text{ m}^3$; $\blacktriangle - V_\kappa = 1.06 \cdot 10^{-3} \text{ m}^3$; $\bullet - V_\kappa = 1.6 \cdot 10^{-3} \text{ m}^3$; $\omega_\tau = 2.5 \cdot 10^6 \text{ Дж/кг}$ и $E_0 = 0.67 \cdot 10^6 \text{ В/м}$.

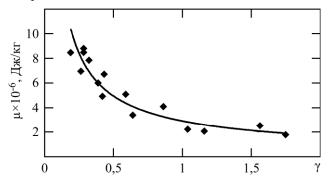
На основании полученных результатов можно сделать вывод, что в исследованном диапазоне изменения начальных и граничных условий при неизменных величинах ω_{τ} и E_0 для камер разных объемов абсолютная величина удельной энергетической эффективности μ устанавливается только значением γ .

Таким образом, при ВЭХВ в ограниченных объемах удельная энергетическая эффективность μ сгорания фиксированного экзотермического состава определяется помимо основных электрофизических величин ω_{τ} и E_0 безразмерным обобщенным параметром γ , то есть $\mu = f(\omega_{\tau}, E_0, \gamma)$.

Влияние основных электрофизических факторов ω_{τ} и E_0 и обобщенного параметра γ на удельную энергетическую эффективности ВЭС при ВЭХВ в ограниченном объеме исследовалось в отдельности для каждого из них. Вначале исследовали влияние ω_{τ} на закономерность поведения функции $\mu = f(\gamma, \omega_{\tau})$ при постоянной величине E_0 .

В экспериментах величина запасенной энергии изменялась в диапазоне $(1,0-10)\cdot 10^2$ Дж при напряжении $U_0=20\cdot 10^3$ В, длине разрядного промежутка $l=3\cdot 10^{-2}$ м и изменении массы ВЭС в диапазоне $(0,1-0,6)\cdot 10^{-3}$ кг. Результаты этих исследований представлены на рис. 3.

Рис. 3. Зависимость удельной энергетической эффективности μ ВЭС при ВЭХВ в ограниченном объеме от обобщенного параметра γ при $E_0=0.67\cdot 10^6$ В/м. $I-\omega_{\tau}=0.7\cdot 10^6$ Дж/кг; $2-\omega_{\tau}=1.0\cdot 10^6$ Дж/кг; $3-\omega_{\tau}=1.5\cdot 10^6$ Дж/кг; $4-\omega_{\tau}=2.5\cdot 10^6$ Дж/кг; $5-\omega_{\tau}=5.0\cdot 10^6$ Дж/кг; $6-\omega_{\tau}=10^7$ Дж/кг.


Видно (рис. 3), что с увеличением удельной электрической энергии ω_{τ} при фиксированном значении E_0 и γ величина μ возрастает, а следовательно, увеличивается полнота сгорания ВЭС. Общим в поведении функций $\mu = f(\omega_{\tau}, \gamma)$, представленных на рис. 3, является снижение удельной эффективности сгорания ВЭС при ВЭХВ в ограниченном объеме при увеличении параметра γ .

Обращает на себя внимание то, что величина μ для всех значений ω_{τ} интенсивно снижается с увеличением абсолютных значений обобщенного безразмерного параметра γ до значения $\gamma \leq 0.75$, далее градиент изменения функции $\mu = f(\gamma)$ уменьшается и величина μ стремится к значению μ_0 .

Результаты обработки экспериментальных данных для построения зависимости $\mu = f(\gamma)$ для разных объемов камеры

$V_k \cdot 10^{-3},$	γ	µ·10 ⁶ , Дж/кг	<i>M</i> ·10³, кг	W₀, Дж	W_n , Дж	$W_{ au}$, Дж	Δ <i>W</i> , Дж	h/d	µ₀· 10 ⁶ , Дж/кг	W _{ср} , Дж	$V_{\text{max}} \cdot 10^{-3}$,	% сгорания
IVI		дж/кі	KI	Дж	Дж	ДЖ	ДЖ		дж/кі	ДЖ	IVI	Al
0,79	0,17	7,0	0,3	750	2628	528	2100	0,31	2,15	1173	4,69	37,5
1,06	0,21	6,5	0,3	750	2573	623	1950	0,31	2,15	1268	5,07	34,8
0,79	0,23	6,3	0,2	500	1688	429	1259	0,29	2,15	859	3,44	33,7
1,06	0,31	5,8	0,2	500	1602	435	1167	0,28	2,15	865	3,46	31,3
1,6	0,31	5,4	0,3	750	2252	632	1620	0,29	2,15	1277	5,11	28,9
0,79	0,45	4,8	0,1	250	701	220	481	0,22	2,15	435	1,74	25,8
1,6	0,46	5,0	0,2	500	1436	437	999	0,26	2,15	867	3,47	26,8
1,06	0,6	4,6	0,1	250	691	230	461	0,23	2,15	445	1,78	24,7
1,6	0,88	4,0	0,1	250	642	241	401	0,20	2,15	456	1,82	21,5

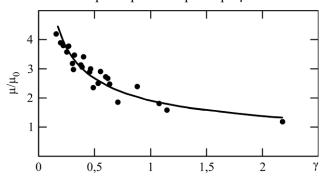

Влияние E_0 на величину μ при постоянной ω_{τ} представлено на рис. 4, где показана проведенная аппроксимация экспериментальных данных (обозначенных точками) степенной зависимостью $\mu = 2.91 \cdot \gamma^{-0.76}$ с достоверностью аппроксимации $R^2 = 0.92$.

Рис. 4. Удельная энергетическая эффективность $\mu = f(E_0, \gamma)$ при изменении величины средней напряженности E_0 в пределах $(5-10)\cdot 10^5$ В/м.

Видно (рис. 4), что изменение напряженности в исследованном диапазоне не оказывает существенного влияния на величину µ, что совпадает с данными для ВЭХВ в безграничном объеме [1].

Таким образом, выполненные экспериментальные исследования, представленные на рис. 3 и 4, показывают, что, в отличие от ВЭХВ в безграничном объеме, эффективное протекание экзотермических реакций при ВЭХВ в ограниченном объеме определяется не только величинами E_0 и ω_{τ} , но существенным образом зависит от безразмерного параметра γ .

Рис. 5. Зависимость относительной величины удельной энергетической эффективности μ/μ_0 ВЭС при ВЭХВ в ограниченных объемах от обобщенного параметра γ при $\omega_{\tau}=(0.7-10)\cdot 10^6$ Дж/кг; $E_0=(5-10)\cdot 10^5$ В/м; $V_{\kappa}=(0.79-1.6)\cdot 10^{-3}$ м³.

Полученные зависимости $\mu = f(\omega_{\tau}, E_0, \gamma)$, представленные на рис. 2–4, являются не совсем удобными для практического использования, поскольку в каждом конкретном случае требуется их уточнение. Более универсальной является зависимость относительной величины удельной энергетической эффективности ВЭС μ/μ_0 от обобщенного параметра γ , представленная на рис. 5, где показана аппроксимация

экспериментальных данных (обозначенных точками) степенной зависимостью $\mu/\mu_0 = 1,92 \cdot \gamma^{-0,48}$ с достоверностью аппроксимации $R^2 = 0.91$.

Согласно рис. 5, при возрастании обобщенного параметра γ до значения $\gamma \leq 0.75$ относительная величина удельной энергетической эффективности μ/μ_0 ВЭС интенсивно убывает, что свидетельствует о снижении эффективности сгорания ВЭС при увеличении ограниченного объема.

При ВЭХВ в «малом объеме» эффективность выделения тепловой энергии в канале разряда за счет протекания экзотермических реакций по сравнению с ВЭХВ в безграничном объеме (в исследуемом диапазоне изменения начальных параметров) возрастает более чем в 4 раза (рис. 5). Однако, как показывают численные экспериментов оценки ПО результатам (см. таблицу), в канале ВЭХВ выделяется не 37,5% потенциально возможной исследуемого ВЭС энергии для содержанием алюминия. При этом теоретические теплового эффекта химических превращений выбранного ВЭС при ВЭХВ с использованием закона Гесса [13] (тепловой зависит только OT начального конечного состояния продуктов) показывают, что он составляет порядка 34,2% потенциальной химической энергии.

выводы

На основании впервые проведенных систематических целенаправленных экспериментальных исследований энергетических характеристик ВЭХВ в ограниченных объемах можно сделать следующие выводы:

- впервые предложено и обосновано использование обобщенного параметра γ , учитывающего характеристики ограниченного объема, который наряду с электрофизическими величинами E_0 и ω_{τ} определяет величину удельной энергетической эффективности ВЭС при ВЭХВ в ограниченных объемах;
- установлена универсальная зависимость относительной величины удельной энергетической эффективности μ/μ_0 выбранного ВЭС при ВЭХВ в ограниченном объеме от обобщенного параметра γ , которая может быть использована при расчете комбинированного энергоисточника применительно к требованиям конкретной технологии.

ЛИТЕРАТУРА

1. Вовченко А.И., Посохов А.А. *Управляемые* электровзрывные процессы преобразования энергии в конденсированных средах. Киев: Наукова думка, 1992. 168 с.

- 2. Кондриков Б.Н., Вовченко А.И., Анников В.Э., Иванов В.В. *Взрывные превращения электрической и химической энергии*. Киев: Наукова думка, 1987. 128 с.
- 3. Гулый Г.А., Иванов В.В., Вовченко А.И., Хомкин А.Л. и др. *Разрядно-импульсная технология:* проблемы совершенствования. Киев: Наукова думка, 1988. С. 20–30.
- 4. Вовченко, А.И., Посохов А.А. Физико-технические аспекты электровзрывного преобразования энергии. Сборник научных трудов. Киев: Наукова думка, 1990. С. 7–20.
- 5. Ризун А.Р., Голень Ю.В., Яцюк С.А. *ЭОМ*. 2006, (1), 70–72.
- 6. Рытов С.А. Жилищное строительство. 2010, (5), 47–50.
- 7. Ризун А.Р., Поздеев В.А., Голень Ю.В. *ЭОМ*. 2010, (3), 78–81.
- 8. Барбашова Г.А., Вовченко А.И. Вісник НТУ «ХПІ». Серія: Техніка та електрофізика високих напруг. 2013, (60), 31–37.
- 9. Барбашова Г.А., Вовченко А.И. ЭОМ. 2016, **52**(2), 51–55.
- 10. Вовченко А.И., Демиденко Л.Ю. *Физика и техника высоких давлений*. 2016, **26**(3–4), 116–123.
- 11. Похил П.Ф., Беляев А.Ф., Фролов Ю.В., Логачев В.С. *Горение порошкообразных металлов в активных средах.* М.: Наука, 1972. 294 с.

- 12. Вовченко А.И., Кучеренко В.В., Шамко В.В. *Прикладная механика и техническая физика.* 1978, (5), 58–64.
- 13. Дрыжаков Е.В., Козлов Н.П., Корнейчук Н.К. *Техническая термодинамика*. М.: Высшая школа, 1971. 472 с.

Поступила 24.03.17

Summary

Based on the experimental studies of the energy characteristics of a high-voltage electrochemical explosion (HVEE) in limited amounts, the use of a combined parameter y that takes into account the characteristics of a limited volume, which along with physical quantities E_0 and ω_{τ} , determines the value of the specific energy efficiency μ of the exothermic composition during the HVEE in limited amounts, i.e. $\mu = f(\omega_{\tau}, E_0, \gamma)$, was proposed and justified. The universal dependence of the relative value of the specific energy efficiency μ/μ_0 of the chosen exothermic compound during the HVEE in a limited volume on the combined parameter γ is established and can be used in the calculation of the combined energy source with respect to the requirements of a particular technology.

Keywords: discharge pulse technology, high-voltage electrochemical explosion, limited volume chamber, gas-vapor cavity, sensor of power impact efficiency, plate deflection.