Создание и исследование новых электродных материалов с самофлюсующимися добавками для повышения эффективности механизированного электроискрового легирования

С. В. Николенко^а, А. Д. Верхотуров^b, Н. А. Сюй^а

^аФедеральное государственное бюджетное учреждение науки, Институт материаловедения ХНЦ ДВО РАН, ул. Тихоокеанская, 153, г. Хабаровск, 680042, Россия ^bФедеральное государственное бюджетное учреждение науки, Институт водных и экологических проблем ДВО РАН, ул. Ким-Ю-Чена, 65, г. Хабаровск, 680000, Россия e-mail: nikola1960@mail.ru

Рассмотрены аспекты увеличения эффективности процесса электроискрового легирования на механизированной установке электродными материалами на основе карбида вольфрама с самофлюсующимися добавками. Определены технология и параметры электроискрового легирования для получения наноструктурированного покрытия размером менее 100 нм, что было установлено методами атомно-силовой микроскопии.

Ключевые слова: электроискровое легирование, эффективность процесса, электродные материалы с самофлюсующимися добавками, наноструктурирование поверхностного слоя.

УДК 621.09

ВВЕДЕНИЕ

В настоящее время на практике в качестве легирующего электрода используют преимущественно некоторые металлы и твёрдые сплавы на основе карбидов вольфрама и титана. Однако они не всегда удовлетворяют требованиям, предъявляемым к электродным материалам (ЭМ) для ЭИЛ в связи с их высокой эрозионной стойкостью и большой стоимостью [1-4]. Для большей эффективности и масштабности применения электроискровых покрытий требуется создание специальных электродных материалов с учётом специфики их поведения в условиях искрового разряда, а также при прямом комплексном использовании минерального сырья (МС). Исследования в области электродного материаловедения до работ Г.В. Самсонова и А.Д. Верхотурова носили разрозненный, несистематичный характер, не были разработаны критерии выбора и принципы создания ЭМ [5, 6]. Однако эксперименты этих исследователей не исчерпали проблему создания новых композиционных материалов, особенно высокоэффективных ЭМ с низкой себестоимостью, а также для формирования качественного легированного слоя (ЛС) с высокими физико-химическими и эксплуатационными свойствами.

Новым перспективным направлением в области ЭИЛ, развивающимся в Институте материаловедения ХНЦ ДВО РАН, является комплексный методологический подход, учитывающий

влияние как состава ЭМ, так и технологии электроискровой обработки на состав, структуру и свойства ЛС [1]. В этой связи для решения задачи повышения эффективности процесса ЭИЛ и получения требуемых характеристик покрытий наряду с созданием многокомпонентных ЭМ актуальной также считается разработка способов формирования ЭИЛ покрытий и нового оборудования для их технической реализации.

В связи с этим цель работы – создание новых электродных материалов на основе карбида вольфрама с самофлюсующимися добавками для повышения эффективности процесса механизированного ЭИЛ.

МЕТОДИКИ, ОБОРУДОВАНИЕ И МАТЕРИАЛЫ

Работа выполнялась в соответствии с разработанной общей методологической схемой, приведенной на рис. 1. При этом предполагалось, что введение в состав твердого сплава самофлюсующихся добавок повысит эффективность процесса эрозии, формирования легированного слоя и его свойств. Ожидалось, что механизированное электроискровое легирование с жестким режимом также повысит эффективность процесса ЭИЛ. Эта схема может служить базой для создания электродных материалов с различными добавками, в том числе минерального и другого сырья. В данной работе используются только самофлюсующиеся добавки.

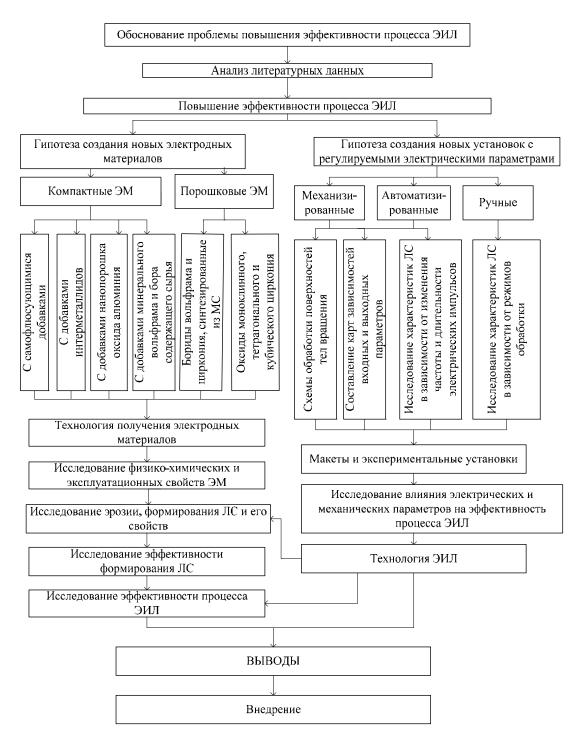


Рис. 1. Методологическая схема повышения эффективности процесса электроискрового легирования.

Электродные материалы на основе карбида вольфрама изготавливали традиционными методами порошковой металлургии. Порошок WC-Co со средним размером 2,4 мкм смешивался с самофлюсующимися добавками и металлами, образующими с материалом катода неограниченно твёрдые растворы (Ni-Cr-B-Si) в планетарной шаровой мельнице Retsch PM 400 в течение 15 мин при частоте 250 об/мин (отношение массы шаров к материалу 4:1). Затем данные смеси спрессовывались под давлением 145 МПа. Спекание производилось в вакууме при давлении 10 Па. Выдержка при температуре 1440°C соста-

вила 1 ч. Охлаждение производилось со скоростью 50°С/мин. Полученные образцы ЭМ были отшлифованы и отполированы до зеркального состояния. Их микроструктура исследовалась на растровом электронном микроскопе EVO 40.

Металлографический анализ шлифов электродов и легированных слоёв проводился на микроскопе ММР-2Р, дюрометрический — на микротвердомере ПМТ-3М с нагрузкой 50 Н. Гранулометрический анализ продуктов эрозии осуществлялся по методике [7] на микроскопе МБС-10. Фазовый состав покрытий исследовали с помощью рентгеновского дифрактометра

ДРОН-7 в Си Ка-излучении. Дифрактограммы расшифровывали с помощью программного обеспечения PDWin. Фазовый анализ осуществляли также посредством просвечивающего электронного микроскопа ZEISS Libra-120, оснащенного HAADF-детектором и энергетическим Ω-фильтром. Исследования проходили в режимах на просвет, темного поля и электронной микродифракции. Образцы для просвечивающей микроскопии подготавливались методом электролитической полировки и ионным травлением. Использовались также рентгеновский анализатор «JCXA-733», микроанализатор «МАР-3» и массанализатор «ЭМАЛ-2». Топография поверхности ЭМ изучалась на атомно-силовом микроскопе (ACM) системы ЗНЛ NTEGRA. Микроскопические исследования проводились на ACM Aist-NT SmartSPM, комбинационное рассеяние света изучалось на микроспектрометре OmegaScope, интегрированном с Aist-NT SmartSPM.

В процессе ЭИЛ определялось изменение массы катода – стали 35 и эрозии анодов – стандартного твердого сплава ВК8 и материала на основе карбида вольфрама с добавками 5, 10 и 20 вес.% Ni–Cr–B–Si (в зависимости от удельного времени легирования) и различными электрическими параметрами.

Легированные слои наносились на типовой механизированной установке с вращающимся торцевым электродом типа «Элитрон-101». Обработка велась электрическими импульсами от специально разработанного генератора импульсов модели "IMES" с возможностью управления от встроенного контроллера или внешнего компьютерного устройства при электрических параметрах, приведенных в табл. 1 [8].

Исследовали временные зависимости суммарных и удельных эрозий анода, а также суммарных и удельных привесов катода. Эффективность процесса формирования ЛС рассчитывалась по формуле $\gamma = \Sigma \Delta_{\kappa} K_{cp} t_{\kappa}$ (см³·мин). Здесь t_x – порог хрупкого разрушения ЛС, то есть время обработки, после которого возникает отрицаудельный K_{cp} – тельный привес катода, коэффициент переноса материала за время t_x , равный отношению $K_{cp} = \Delta_{\kappa}/\Delta_a$, где Δ_{κ} и Δ_{a} – привес катода и эрозия анода за каждую последующую минуту легирования соответственно.

Образцы на износостойкость после ЭИЛ исследовались по стандартной методике. Испытания проводили по схеме «вал-колодка» на машине трения МТ-22П при нагрузке 100 Н и скорости скольжения 0,025 м/с в условиях трения без смазки. Материалом контртела служила закалённая сталь 40Х (HRC 58-60). Износ образцов определяли через каждый километр пути трения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Электродные материалы на основе карбида вольфрама

На основании ранее разработанных принципов создания ЭМ для ЭИЛ разработаны новые электроды, обеспечивающие эффективность этого процесса за счёт введения в состав шихты самофлюсующихся добавок и металлов, образующих с материалом катода неограниченно твёрдые растворы [1, 3].

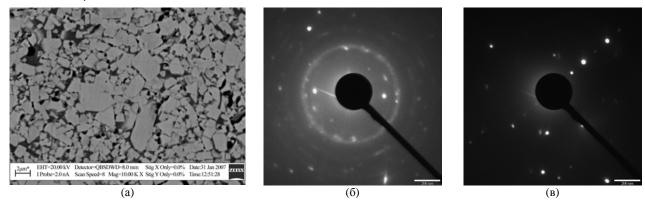
Микроструктура электродных материалов представлена на рис. 2а.

Расшифровка рентгенограмм показала, что в электродном материале на основе карбида вольфрама с добавками Ni–Cr–B–Si, кроме основной фазы WC, содержится фаза Co_2C , появляются бориды никеля, а также карбиды кремния. Электронограммы просвечивающей микроскопии подтвердили присутствие карбидов вольфрама (рис. 26), наличие боридов никеля (рис. 2в) – NiB, Ni₂B, Ni₃B, а также выявили присутствие силицидов никеля.

Исследования топографии поверхности спеченного электрода методом атомно-силовой микроскопии показали, что использование добавки самофлюсующихся порошков снижает размер пор в электродном материале, при этом их объем сохраняется (рис. 3).

Физико-химические и эксплуатационные характеристики покрытий на основе карбида вольфрама, полученные методом ЭИЛ

В табл. 2 приведены параметры процесса ЭИЛ стали 35 исследуемыми ЭМ. Как видно из таблицы, максимальная эффективность этого процесса достигнута при упрочнении стали 35 сплавом ВК8 с 20% добавкой Ni–Cr–B–Si, она увеличилась более чем в 5 раз по сравнению со стандартным сплавом ВК8 при длительности импульсов 80 мкс. При легировании за 10 мин/см² порог хрупкого разрушения не достигался для разработанных ЭМ с 10 и 20% добавкой Ni–Cr–B–Si.


В табл. 3 приведены выборочные данные гранулометрического состава продуктов эрозии. На рис. 4 показан вид продуктов эрозии, полученных при ЭИЛ стали 35 новыми электродными материалами на основе твёрдого сплава ВК8 с самофлюсующимися добавками.

В соответствии с данными табл. 3 можно отметить, что с увеличением содержания самофлюсующейся добавки существенно увеличивается количество жидкофазной составляющей – с 43% для стандартного сплава до 90% для сплава

Электрические параметры Длительность искровых разрядов, мкс 10 20 80 160 180 195 210 225 I_p , A U, B 40 40 40 40 40 500 500 500 Частота импульсов, Гц 500 500 Скважность 200 100 50 33 25 0,2 0.72 3.12 7,6 14.4

Таблица 1. Электрические параметры установки электроискрового легирования IMES

Примечание. I_p – рабочий ток; U – напряжение; E – максимальная энергия разряда.

Рис. 2. Микроструктура электрода на основе карбида вольфрама с самофлюсующимися добавками Ni–Cr–B–Si: (a) WC-8%Co + 10% Ni–Cr–B–Si; (б) электронная дифрактограмма карбида вольфрама; (в) электронная дифрактограмма борида никеля.

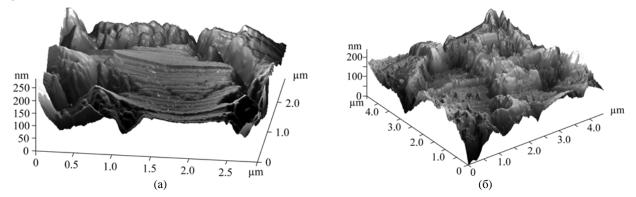


Рис. 3. Топография спеченного электрода на основе WC: (а) без добавки; (б) с 10% добавкой самофлюсующихся порошков.

с самофлюсующейся добавкой, что положительно сказывается на формировании ЛС.

С помощью просвечивающего электронного микроскопа были проведены дополнительные исследования частицы продуктов эрозии, размер которых составлял несколько нанометров. Электронограммы просвечивающей микроскопии показали наличие частиц размером от 5 до 20 нм (рис. 5), а также оксида кобальта, C, O, Fe, Co.

Исследования микроструктуры ЛС, которая также зависит от состава легирующего сплава, показали, что с увеличением количества самофлюсующей добавки в последнем повышаются сплошность и толщина ЛС (табл. 4). Максимальное значение микротвёрдости наблюдается при содержании добавки 10–20% (рис. 6). Дальнейшее увеличение добавки снижает микротвердость. Микроструктура ЛС двухфазная и состоит из белой и серой фаз. Серая фаза находится в виде отдельных участков в белой фазе. Ее со-

держание увеличивается с повышением количества добавки в сплаве. Белый слой (БС) располагается светлой каймой вдоль границ основы, ниже которой образуется зона технического влияния (ЗТВ). Микротвёрдость ЛС уменьшается от серой фазы к белой и далее к материалу основы. Максимальные значения микротвёрдости H_{μ}^{100} серой фазы в ЛС (21–30 ГПа) и белой (22–23 ГПа) получены ЭИЛ сплавом с 10 масс.% добавки Ni–Cr–B–Si.

Таким образом, показано, что в покрытиях, полученных ЭИЛ новыми гетерофазными электродными материалами, образуется серая фаза более высокой микротвёрдости, чем микротвёрдость БС, характерного для электроискровых покрытий из сплава ВК8, для которого величина $H_{\mu}^{100} = 16{\text -}18$ ГПа (время легирования 7–8 мин/см²).

Исследования ACM (рис. 7) показали, что при ЭИЛ ЭМ на поверхности ЛС образуется нано-

Таблица 2. Параметры процесса механизированного ЭИЛ стали 35 («Элитрон-101», "IMES" (частота 500 Гц, длительностью 20–80 мкс, напряжение 50 В, ток 160–225 А), H_{μ} основы стали 35 – 1,99–2,4 ГПа), электроды ВК8, ВК8 + 5% Ni–Cr–B–Si, ВК8 + 10% Ni–Cr–B–Si, ВК8 + 20% Ni–Cr–B–Si

Длительность, мкс	$\sum \Delta k \cdot 10^{-4} \mathrm{cm}^3$	$\sum \Delta a \cdot 10^{-4} \text{ cm}^3$	t_{x} , мин	K_{cp} , мин $^{-1}$	γ·10 ⁻⁴ см ³ ·мин			
	за время t_x	за время t_x						
Электрод ВК8, частота 500 Гц								
20	3,31	5,65	10	0,59	19,53			
40	6,03	10,89	10	0,55	33,17			
60	7,61	14,34	9	0,53	36,3			
80	8,1	13,12	7	0,62	35,15			
Электрод BK8 + 5% Ni-Cr-B-Si, частота 500 Гц								
20	5,43	8,64	10	0,63	34,21			
40	10,03	12,89	10	0,78	78,23			
60	15,61	18,34	10	0,85	132,69			
80	17,11	20,98	8	0,82	112,24			
Электрод BK8 + 10% Ni-Cr-B-Si, частота 500 Гц								
20	7,26	9,38	10	0,77	55,90			
40	12,69	16,34	10	0,78	98,98			
60	14,75	18,85	10	0,78	115,05			
80	17,75	20,25	10	0,88	156,2			
Электрод BK8 + 20% Ni–Cr–B–Si, частота 500 Гц								
20	9,92	11,77	10	0,84	83,33			
40	15,46	19,85	10	0,78	120,59			
60	18,54	21,23	10	0,87	161,3			
80	23,54	26,69	10	0,88	207,15			

Таблица 3. Гранулометрический состав продуктов эрозии

Материал анода	Шарообразные частицы		Частицы хрупкого разрушения	
	Ø, мкм	содер., %	размер, мкм	содер., %
ВК8	12–150	43	20–550	57
BK8 + 5% Ni–Cr–B–Si	10–80	71	25-490	29
BK8 + 10% Ni-Cr-B-Si	8–70	90	25-495	10

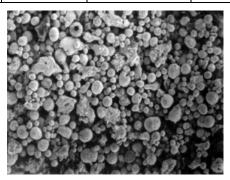
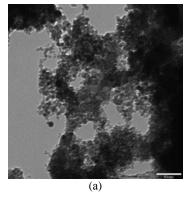
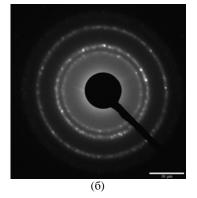
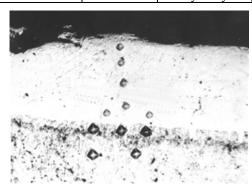
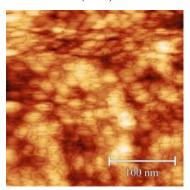




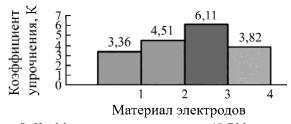
Рис. 4. Продукты эрозии, полученные при ЭИЛ стали 35 электродным материалом ВК8 + 10% Ni–Cr–B–Si (×200).




Рис. 5. Микроструктура продуктов эрозии электрода на основе карбида вольфрама с самофлюсующимися добавками Ni–Cr–B–Si: (a) WC-8%Co + 10% Ni–Cr–B–Si; (б) электронная дифрактограмма оксида кобальта.

Добавка	Macc.%	Толщина по-	Сплош-	H_{μ} , ГПа		K_{ynp}
	добавки	крытий ± 5 мкм	ность	БС	CC	
			± 10%			
ВК8	_	20	85	16,8	Отсутствует	3,36
Ni-Cr-B-Si	5	40	95	22,55	21,35	4,51/4,27
	10	89	99	23,57	30,55	4,71/6,11
	20	98	99	Отсутствует	19,09	3,82

Таблица 4. Характеристики покрытий, полученных при ЭИЛ стали 45 (H_u^{och} стали 35 – 5 ГПа)

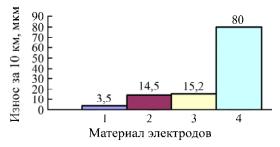

Рис. 6. Характерный вид микроструктуры ЛС, полученного после ЭИЛ стали 35 материалом на основе твёрдого сплава ВК8 с добавкой 20% Ni–Cr–B–Si (×700).

400 nm

Рис. 7. АСМ изображение покрытия ЭИЛ.

структура с размерами несколько сотен нанометров. На рис. 8 представлена гистограмма коэффициента упрочнения ЛС. Из данных гистограммы видно, что максимальный эффект упрочнения подложки достигается при упрочнении электрода с 5–10% добавки для сплава на основе WC–Co.

Рис. 8. Коэффициент упрочнения стали 45 ЭМ на основе карбида вольфрама. Материал электродов: 1-BK8; 2-BK8+5% Ni–Cr–B–Si; 3-BK8+10% Ni–Cr–B–Si; 4-BK8+20% Ni–Cr–B–Si.


Полуколичественный микрорентгеноспектральный анализ ЛС электродных материалов со связкой Ni–Cr–B–Si (5%) установил присутствие Fe, Cr, Mn, Co, Si, W с концентрациями: Cr – 8,7%, Ni – 22,8%. Элементный анализ показал наличие Fe, W, Ni, Co, Cr, Mn, B, Si, C в ЛС

при ЭИЛ ЭМ с 20% добавкой Ni–Cr–B–Si (элементы указаны в порядке убывания).

По данным РФА, в результате легирования на поверхности катода образуется белый слой в виде механической смеси WC, полуторного карбида W_2 C, интерметаллидов Fe_3W_3 C, Co_6W_6 C, а также ЗТВ. Толщина БС и ЗТВ зависят от состава ЭМ. С увеличением количества добавки в покрытиях формируется серый слой, который слабо травится. В ЛС обнаружены также α -Fe и оксиды Fe_2O_3 и WO_3 . Возникновение в покрытии α -Fe и тройного карбида вольфрама с железом Fe_3W_3 C, видимо, обусловлено микрометаллургическими процессами на катоде, перемешиванием и химическими реакциями компонентов ЭМ с материалом катода. Фаза W_2 C образуется в результате диссоциации фазы WC.

Исследование износостойкости ЛС показало, что при небольшом пути трения-скольжения (1–3 км) в общем случае наблюдается небольшой износ (1–5 мкм). При большем пути трения наилучшие результаты имеют покрытия с 20 мас.% добавки Ni–Cr–B–Si, которая улучшает

износостойкость материала подложки в 5 и более раз по сравнению с покрытием из твёрдого сплава BK8 (рис. 9). Материал электродов: 1-20% Ni–Cr–B–Si; 2-5% Ni–Cr–B–Si; 3-10% Ni–Cr–B–Si; 4-BK8.

Рис. 9. Гистограмма относительного износа стали 35 после ЭИЛ электродами на основе карбида вольфрама.

выводы

- 1. Создан новый электродный материал на основе карбида вольфрама, содержащий металлы, образующие с материалом катода неограниченно твердые растворы и самофлюсующиеся добавки, разупрочняющие электродный материал с целью увеличения эффективности процесса ЭИЛ и способствующие:
- снижению образования оксидных/нитридных фаз и предотвращению охрупчивания ЛС (В, Si и т.д.);
- обеспечению лучшего взаимодействия материалов электродов и лучших условий формирования ЛС за счет максимальной диффузии легирующих элементов анода в катод;
- улучшению эксплуатационных характеристик ЛС (износостойкости, жаростойкости и т.д.).
- 2. Доказано на примере электродного материала из карбида вольфрама с самофлюсующимися добавками, что учет взаимосвязей состава структуры свойств технологии в процессе электроискрового нанесения позволяет сформировать легированный слой с микротвёрдостью, существенно превосходящей ее величину для типового сплава ВК8.
- 3. Определены технологические режимы и параметры электроискрового нанесения наноструктурированных покрытий (напряжение 40 В, частота следования импульсов 500 Гц, длительность разряда от 40 до 80 мкс), которые сформированы из жидкой фазы, на 70–90% представлены сферическими частицами и обладают комплексом повышенных эксплуатационных и функциональных характеристик.
- 4. Максимальная эффективность процесса ЭИЛ достигнута при упрочнении стали 35 сплавом ВК8 с 20% добавкой Ni–Cr–B–Si более чем в

5 раз по сравнению со стандартным сплавом ВК8 при длительности импульсов 80 мкс. При легировании за 10 мин/см² порог хрупкого разрушения не достигался для разработанных ЭМ с 10 и 20% добавкой Ni–Cr–B–Si.

ЛИТЕРАТУРА

- 1. Николенко С.В. *Новые электродные материалы для электроискрового легирования*. Владивосток: Дальнаук, 2005. 219 с.
- 2. Верхотуров А.Д., Гордиенко П.С., Достовалов В.А. и др. Высокоэнергетическое локальное воздействие на вольфрамсодержащие материалы и металлы. Владивосток: Изд-во Дальневосточного федерального университета, 2012. 472 с.
- 3. Николенко С.В. Повышение эффективности применения функциональных электроискровых покрытий на сталях и титановых сплавах путем создания электродных материалов с минеральными и самофлюсующимися добавками. Автореферат диссертации на соискание ученой степени доктора технических наук. Комсомольск-на-Амуре. 2013. 44 с.
- 4. Zamulaeva E.I., Levashov E.A., Kudryashov A.E. Electrospark Coatings Deposited onto an Armco Iron Substrate with Nano- and Microstructured WC–Co Electrodes: Deposition Process, Structure, and Properties. *Surf Coat Tech.* 2008, **202**, 3715–3722.
- 5. Самсонов Г.В., Верхотуров А.Д., Бовкун Г.А., Сычёв В.С. Электроискровое легирование металлических поверхностей. Киев: Наукова думка, 1978. 220 с.
- 6. Самсонов Г.В., Верхотуров А.Д. Влияние межэлектродной среды на эрозию материала анода при электроискровом легировании. *ЭОМ*. 1974, (1), 33–35.
- 7. Намитоков К.К. Об агрегатном состоянии, составе и строении продуктов электрической эрозии металлов. Физические основы электроискровой обработки материалов. М.: Наука, 1966. С. 86–109.
- 8. Николенко С.В., Бурков А.А. Некоторые аспекты механизированного электроискрового легирования стали вращающимся торцевым электродом твердыми сплавами с различной частотой и длительностью электрических импульсов. Упрочняющие технологии и покрытия. 2011, (5), 21–27.

Поступила 06.03.14

Summary

The article considers the aspects of raising the efficiency of the process of electrospark alloying on the mechanised installation by tungsten carbide electrode materials with self-fluxing additives. Technological modes and parametres of electrospark alloying of nanostructured coatings are defined, formation of nanostructures in a surface layer of 100 nm is established by the atomic force microscopy.

Keywords: electrospark alloying, process efficiency, electrode materials with self-fluxing additives, nanostructuring of the surface layer.