https://doi.org/10.5281/zenodo.3369714
УДК 544.643-621.157
Исследован оксид V2O5, полученный в тонких слоях на аноде из нержавеющей стали 18Н12Х9Т из водного раствора метаванадата аммония с последующей обработкой при температуре 300 и 500°C, в редокс-реакции с литием в сравнении с аналогами, произведенными из раствора сульфата оксованадия, для использования в литиевом тонкослойном аккумуляторе. Физико-химические, структурные свойства, морфологию поверхности осадков определяли, применяя рентгенофазовый анализ, ИК-спектроскопию поглощения, термоаналитическое исследование, атомно-силовую микроскопию. Разветвленная структура осадков, полученных из раствора сульфата оксованадия, способствует лучшей адгезии их к основе, чем крупноблочная структура осадков, полученных из метаванадатного раствора. Для использования в литиевой аккумуляторной системе V2O5, полученного из метаванадатного раствора, необходимо найти способы модификации морфологии поверхности осадков. Дроблению блочной структуры может способствовать осаждение V2O5 в присутствии Со2+.
Ключевые слова: V2O5 оксид, электролизный синтез, метаванадатный электролит, аккумулятор, разрядная емкость, сульфат оксованадия.
V2O5 oxide was obtained in thin layers on an anode of 18Н12Х9Т stainless steel from an aqueous solution of ammonium metavanadate followed by treatment at 300 and 500°C. It was investigated in the redox reaction with lithium to be compared with analogues obtained from oxovanadium sulfate solution to be used in a lithium thin layer battery. The physical-chemical and structural properties, the morphology of the surface of the deposits were determined using X-ray phase analysis, IR absorption spectroscopy, thermoanalytical study, and atomic force microscopy. Large-block deposits with a smooth surface structure precipitated from a solution of NH4VO3 differ significantly from the deposits with a branched surface structure obtained from a solution of oxovanadium sulfate. The hydrated electrolysis product VO2 nV2O5(n = 1–3) with the presence of NH4+ after high-temperature treatment is transformed into orthorhombic V2O5. The discharge characteristics of V2O5 in the redox reaction with lithium in a liquid-phase electrolyte 1 mole/l LiClO4, propylene carbonate, dimethoxyethane differ from those in a polymer electrolyte with a polyvinyl chloride matrix including propylene carbonate, LiN(CF3SO2)2. The discharge capacity of V2O5 obtained from the metavanadate solution at the treatment T = 300 С (7 h) decreases in a liquid-phase electrolyte from 250 mAh/g to 110 mAh/g in the 40th cycle, while in a polymer electrolyte - from 210 mAh/g to 100 mAh/g at an earlier cycling stage. The reversibility of the electrode process is lost at the stage of phase transition (δ-γ) in V2O5 near a voltage of 2.3 V. Annealing the deposits at 500°С increases the discharge capacity of V2O5 obtained from a solution of oxovanadium sulfate. The large-block structure of the deposits obtained from the metavanadate electrolyte does not allow increasing their heating to 500°С due to the loss of adhesion of the deposits to the metal base. The branched structure of the deposits obtained from the solution of oxovanadium sulfate promotes their better adhesion to the base than a large-block structure of the deposits obtained from the metavanadate solution. For the usage of V2O5 obtained from the metavanadate solution in the lithium battery system, it is necessary to find ways to modify the morphology of the deposit surface. V2O5 deposition in the presence of Co2+ can contribute to the fragmentation of the block structure.
Keywords: V2O5 oxide, electrolysis synthesis, metavanadate electrolyte, Li-accumulator, discharge capacity, oxovanadium sulfate.
Download full-text PDF. 2528 downloads
Web-Design Web-Development SEO - eJoom Software. All rights reserved.