Электрическое поле в окрестности заряженной струи. Нелинейный расчёт

А. И. Григорьев, Н. А. Петрушов, С. О. Ширяева

Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150000, Россия, e-mail: <u>grig@uniyar.ac.ru</u>

Рассчитана напряженность электрического поля собственного заряда в окрестности бесконечной цилиндрической струи жидкости, по поверхности которой бегут волны конечной амплитуды с произвольной симметрией.

Ключевые слова: струя, заряд, напряженность электрического поля, нелинейные капиллярные волны, коронный разряд.

УДК 532.517.013.4:537.2

ВВЕДЕНИЕ

В самых разных задачах техники и технологии приходится сталкиваться с заряженными струями жидкости [1-3]. Энергопотери на линиях электропередач, увеличивающиеся после дождей, обязаны своим существованием мокрым проводам и зажиганию коронного разряда в окрестности проводов. Эту ситуацию можно рассматривать в математическом отношении как частный случай заряженной струи с твёрдым сердечником [4]. Тем не менее ещё никто не рассчитывал напряженность электрического поля в окрестности нелинейно осциллирующей заряженной струи или мокрого провода со слоем воды на поверхности. Этой проблеме и посвящено настоящее исследование на примере расчёта напряженности поля в окрестности струи жидкости, по которой бежит капиллярная волна.

ПОСТАНОВКА ЗАДАЧИ

Рассмотрим задачу об устойчивости капиллярных волн на однородно заряженной поверхностной плотностью заряда х цилиндрической поверхности струи радиуса *R* идеальной несжимаемой идеально проводящей жидкости с коэффициентом межфазного натяжения о и плотностью р₁. Представим, что струя движется со скоростью U₀ параллельно e_Z (e_Z – орт продольной координаты) в идеальной несжимаемой диэлектрической среде, имеющей плотность р2 и диэлектрическую проницаемость, равную единице. Задачу будем решать в инерциальной системе отсчета, связанной с осью симметрии невозмущенной струи и движущейся со скоростью U_0 , в цилиндрической системе координат, орт е_Z которой совпадает по направлению с U₀ и осью симметрии невозмущенной капиллярным волновым движением цилиндрической поверхности струи. Все рассмотрение проведем в безразмерных переменных, в которых $R = \rho_1 = \sigma = 1$, а поверхность раздела сред, возмущенная капиллярным волновым движением, описывается соотношением

$$F = r-1 - \xi(\varphi, z, t) = 0, |\xi| << 1,$$

где $\xi(\varphi, z, t)$ – деформация цилиндрической поверхности струи, обусловленная волновым движением; φ – азимутальный угол.

Полная математическая формулировка задачи имеет вид:

$$\partial_{t} \mathbf{u}_{1} + (\mathbf{u}_{1}, \nabla) \mathbf{u}_{1} = -\nabla p_{1};$$

$$\partial_{t} \mathbf{u}_{2} + (\mathbf{u}_{2}, \nabla) \mathbf{u}_{2} = -\frac{1}{\rho_{2}} \nabla p_{2};$$

$$div \mathbf{u}_{1} = 0; \quad div \mathbf{u}_{2} = 0; \quad div \mathbf{E} = 0;$$

$$r = 1 + \xi(\varphi, z, t): \quad \frac{dF}{dt} = 0, \quad (\mathbf{n}, \mathbf{u}_{1}) = (\mathbf{n}, \mathbf{u}_{2});$$

$$p_{1} - p_{2} + p_{E} - \mathbf{p}_{\sigma} = 0; \quad \Phi(r, \varphi, z, t) = \Phi_{s}(t);$$

$$r \rightarrow 0 \quad \mathbf{u}_{1} \rightarrow 0; \quad r \rightarrow \infty: \quad \mathbf{u}_{2} \rightarrow -\mathbf{U}_{0}; \quad \mathbf{E} \rightarrow 0. \quad (1)$$

Сформулированную задачу дополним начальными условиями, задавая начальную деформацию струи в виде одиночной периодической волны с произвольной симметрией:

$$t = 0;$$

$$\xi(z, \varphi, t) = \zeta \left(\exp(ikz + im\varphi) + \exp(ikz - im\varphi) \right) + (\kappa.c.)$$

$$\partial_t \xi(z, \varphi, t) = 0;$$

где ζ – амплитуда начальной волновой деформации; k – волновое число; m – азимутальный параметр; $\kappa.c.$ означает слагаемые, комплексно сопряженные с выписанными.

В качестве дополнительных условий принимаются: условие постоянства объёма струи, приходящегося на одну длину волны $\lambda \equiv 2\pi/k$; условие сохранения заряда на отрезке струи протяженностью в длину волны λ :

$$\frac{1}{4\pi} \int_{S} (\mathbf{n}, \mathbf{E}) dS = 2\pi \chi \lambda, \qquad \chi = \frac{E_n}{4\pi};$$

$$S = \left\{ r = 1 + \xi(\varphi, z, t); \quad 0 \le \varphi \le 2\pi; \quad z_0 \le z \le z_0 + \lambda \right\}.$$

В сформулированной задаче $\mathbf{u}_j \equiv \mathbf{u}_j(r, \varphi, z, t)$ – поля скоростей течения жидкости в струе (j = 1)и среде (j = 2), генерируемые волнами на поверхности раздела сред; $p_j \equiv p_j (r, \varphi, z, t)$ – гидродинамические давления в струе (j = 1) и среде (j = 2); p_E и p_{σ} – давления электрических сил и сил поверхностного натяжения на границе раздела сред; $\Phi \equiv \Phi(r, \varphi, z, t)$ – потенциал электростатического поля; $\Phi_S(t)$ – потенциал поверхности струи; \mathbf{n} – орт нормали к поверхности струи; ρ_2 – безразмерная плотность среды.

В следующем рассмотрении течения жидкостей будем считать потенциальными

$$\mathbf{u}_1 = \nabla \psi_1, \quad \mathbf{u}_2 = -\mathbf{U}_0 + \nabla \psi_2, \quad \mathbf{E} = -\nabla \Phi.$$

РЕШЕНИЕ ЗАДАЧИ

Решение задачи будем искать асимптотическим методом многих временных масштабов, выбирая в качестве малого параметра безразмерную амплитуду волны, заданной в начальный момент времени, $\varepsilon \sim |\zeta|$ подобно тому, как это делалось в [2, 5–7]:

$$\begin{split} \psi_{i} &= \varepsilon \psi_{i}^{(1)} + \varepsilon^{2} \psi_{i}^{(2)} + \mathcal{O}(\varepsilon^{3}); \\ p_{j} &= p_{j}^{(0)} + \varepsilon p_{j}^{(1)} + \varepsilon^{2} p_{j}^{(2)} + \mathcal{O}(\varepsilon^{3}); \\ \xi &= \varepsilon \xi^{(1)} + \varepsilon^{2} \xi^{(2)} + \mathcal{O}(\varepsilon^{3}); \\ \Phi &= \Phi^{(0)} + \varepsilon \Phi^{(1)} + \varepsilon^{2} \Phi^{(2)} + \mathcal{O}(\varepsilon^{3}); \\ \frac{\partial}{\partial t} &= \frac{\partial}{\partial T_{0}} + \varepsilon \frac{\partial}{\partial T_{1}} + \varepsilon^{2} \frac{\partial}{\partial T_{2}} + \mathcal{O}(\varepsilon^{3}). \end{split}$$
(2)

Разложения (2) подставим в систему (1), и все уравнения сгруппируем по степеням є.

Решение сформулированной задачи во втором порядке малости не представляет особенных трудностей, если не принимать во внимание его громоздкость. В частности, аналитическое выражение для потенциала осциллирующей поверхности струи будет иметь вид:

$$\begin{split} \Phi(r,\varphi,z,T_0) &= -4\pi\chi Ln[r] + \\ +8\pi\chi\zeta \frac{K_m(kr)}{K_m(k)} \cos(m\varphi) \bigg\{ \frac{\omega_1}{\omega_0} \cos[\omega_2 T_0 + kz] + \\ &+ \frac{\omega_2}{\omega_0} \cos[-\omega_1 T_0 + kz] \bigg\} + \\ &+ \zeta^2 \Phi^{(2)}(r,\varphi,z,T_0), \\ \omega_1 &\equiv \omega_0 + b_m; \quad \omega_2 \equiv \omega_0 - b_m. \end{split}$$

Частоты $s = -(b_m \pm \omega_0)$ определяются дисперсионным уравнением:

$$s^{2} + \frac{2\delta_{m}}{\beta_{m}}s + \frac{\kappa_{m}}{\beta_{m}} = 0;$$

$$\omega_{0}(m,k) \equiv \sqrt{\frac{\delta_{m}^{2}}{\beta_{m}^{2}} - \frac{\kappa_{m}}{\beta_{m}}};$$

$$b_{m}(k) \equiv \frac{\delta_{m}}{\beta_{m}} \equiv \frac{U_{0}k\rho_{2}g_{m}}{h_{m} - \rho_{2}g_{m}};$$

$$\beta_{m}(k) \equiv g_{m}^{-1} - \rho_{2}h_{m}^{-1} \equiv \frac{h_{m} - \rho_{2}g_{m}}{g_{m}h_{m}};$$

$$\delta_{m}(k,U_{0}) \equiv k\rho_{2}U_{0}h_{m}^{-1};$$

$$\kappa_{m}(k,\chi,U_{0}) \equiv \left\{ \left[1 - m^{2} - k^{2} - w(1 + h_{m})\right] - We \cdot k^{2}h_{m}^{-1} \right\};$$

$$h_{m}(k) \equiv \frac{k}{K_{m}(k)} \equiv m - \frac{k}{K_{m}(k)};$$

$$g_{m}(k) \equiv \frac{k}{I_{m}(k)} \equiv m + \frac{kI_{m+1}(k)}{I_{m}(k)};$$

$$w \equiv 4\pi\chi^{2}; We \equiv \rho_{2}U_{0}^{2}.$$

Здесь s(k, m) — комплексная частота капиллярной волны с волновым числом k и азимутальным параметром m; $I_m(k)$ и $K_m(k)$ — модифицированные функции Бесселя первого и второго рода порядка m; штрихом при функциях Бесселя обозначается её производная по аргументу. Величина $b_m(k)$ имеет смысл частоты волны, претерпевающей неустойчивость типа Кельвина-Гельмгольца, когда выполнится условие

$$\frac{\kappa_m}{\beta_m} > \frac{\delta_m^2}{\beta_m^2},\tag{3}$$

то есть когда $\omega_0(m, k)$ станет мнимым. В свою очередь $\omega_0(m, k)$ при выполнении (3) определяет инкремент нарастания амплитуды волны с частотой $b_m(k)$. При выполнении условия, противоположного (3), $\omega_0(m, k)$ определяет часть полной частоты $\omega_0 \pm b_m$.

РАСЧЕТ НАПРЯЖЕННОСТИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Дальнейшие рассуждения проведём по схеме, использованной в [8–10].

Вектор нормали к поверхности струи определится соотношением

$$\mathbf{n} = \left\{ 1 - \frac{1}{2} \left(\frac{\partial \xi^{(1)}}{\partial z} \right)^2 - \frac{1}{2} \left(\frac{\partial \xi^{(1)}}{\partial \varphi} \right)^2, \\ - \frac{\partial \xi^{(1)}}{\partial \varphi} + \xi^{(1)} \frac{\partial \xi^{(1)}}{\partial \varphi} - \frac{\partial \xi^{(2)}}{\partial \varphi}, - \frac{\partial \xi^{(1)}}{\partial z} - \frac{\partial \xi^{(2)}}{\partial z} \right\}.$$

Тогда нормальная компонента напряженности электростатического поля:

$$E_n = -(\nabla \Phi, \mathbf{n}),$$

или

$$\begin{split} E_{n} &= \frac{4\pi\chi}{r} + 8\pi\chi\zeta \frac{K'_{m}(kr)}{K_{m}(k)} \\ &\cos(m\varphi) \bigg\{ \frac{\omega_{1}}{\omega_{0}} \cos[\omega_{2}T_{0} + kz] + \frac{\omega_{2}}{\omega_{0}} \cos[-\omega_{1}T_{0} + kz] \bigg\} + \\ &+ \zeta^{2} \bigg\{ -4 \frac{K'_{2m}(2k)}{K_{2m}(2k)} \cos[2m\varphi] \big(a_{1}\cos[2kz - 2(b_{m} + \omega_{0})T_{0}] + \\ &+ a_{2}\cos[-2kz + 2(b_{m} - \omega_{0})T_{0}] + \\ &+ a_{3}\cos[-2kz + 2b_{m}T_{0}] \big) - 2 \frac{K'_{0}(2kr)}{K_{0}(2k)} \big(a_{4}\cos[-2kz + 2b_{m}T_{0}] + \\ &+ a_{5}\cos[2kz - 2(b_{m} - \omega_{0})T_{0}] + \\ &+ a_{6}\cos[2kz - 2(b_{m} + \omega_{0})T_{0}] \big) + \\ &+ r^{-1-2m} \Big(4m\cos[2m\varphi] \big(a_{7} + 2a_{8}\cos[2\omega_{0}T_{0}] \big) \big) + \\ &+ \frac{16\pi\chi k^{2}}{\omega_{0}^{2}} \frac{K_{m}(kr)}{K_{m}(k)} \cos^{2}[m\varphi] \times \\ &\times \big((b_{m} + \omega_{0})\sin[kz - (\omega_{0} + b_{m})T_{0}] \big)^{2} + \\ &+ \frac{1}{r} \Big[\frac{16\pi\chi n^{2}}{\omega_{0}^{2}} \frac{K_{m}(kr)}{K_{m}(k)} \times \\ \times \big(((b_{m} + \omega_{0})\cos[kz + (\omega_{0} - b_{m})T_{0}] + \\ &+ (\omega_{0} - b_{m})\cos[kz - (\omega_{0} + b_{m})T_{0}] \big)^{2} \sin^{2}[m\varphi] + \\ &+ k^{2} \Big((b_{m} + \omega_{0})\sin[kz - (\omega_{0} - b_{m})T_{0}] + \\ &+ (\omega_{0} - b_{m})\cos[kz - (\omega_{0} + b_{m})T_{0}] \big)^{2} \cos^{2}[m\varphi] \Big) \bigg\}. \quad (4) \end{split}$$

Не выписанные коэффициенты можно найти в [11].

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

На рис. 1 приведены рассчитанные по (4) зависимости нормальной компоненты безразмерной напряженности электростатического поля от продольной координаты z для осесимметричных волн, рассчитанные при W = 2, волновом числе k = 3 (а) и k = 4 (б). Прямой линией на этом рисунке (и на рис. 2, 3) приведена обезразмеренная напряженность зажигания коронного разряда возле струи в воздухе, рассчитанная по эмпирической формуле Пика:

$$E_k \approx 31\delta(1+0,308/\sqrt{\delta r}) \tag{5}$$

[12, стр. 507]. В (5) напряженность получается в кВ/см; r – радиус цилиндрического провода, измеренный в см; δ – отношение плотности воздуха к нормальной при давлении 760 торр и температуре 298 К.

На рис. 2 приведены зависимости, аналогичные представленным на рис. 1, для неосесимметричной волны с m = 1 (такая волна называется изгибной [2]). На рис. 3 – для неосесимметричной волны с m = 2 (такая волна называется изгибно-деформационной [2]). Из рисунков видно, что для волн с различной симметрией (с различными значениями азимутального числа m) с увеличением волнового числа интенсивность нормальной компоненты безразмерной напряженности электростатического поля быстро увеличивается.

Следует отметить, что волны берутся с волновыми числами из областей устойчивости. Для волн с различной симметрией при принятых значениях параметров это можно видеть из рис.4. Область устойчивых волн, для которых проведены расчёты (рис. 1-3), определяется пересечением выделенной толщиной кривой (самой толстой), соответствующей W = 2, с осью абсцисс. Остальные кривые приведены для иллюстрации зависимости области устойчивости от величины параметра W. На рис. 4 устойчивы волны с волновыми числами, лежащими ниже кривых, построенных при фиксированных значениях прочих параметров. В частности, видно, что для осесимметричных волн при m = 0 в отсутствие заряда (при W = 0) неустойчивы все волны с $k \le 1$. При увеличении W от 0 диапазон неустойчивых волн расширяется и сдвигается в сторону увеличения k. Для неосесимметричных волн с m = 1(изгибных) неустойчивость имеет место при появлении на струе электрического заряда. По мере увеличения W становятся неустойчивыми сначала волны с нереально малыми волновыми числами (можно сказать «гравитационные», если допустить их существование на струе), а затем и волны с k ~ 1. Для неосесимметричных волн с m = 2 (изгибно-деформационных) неустойчивость реализуется при $W \ge 2,905$ [13] (при таком значении W кривая касается оси абсцисс), поэтому при принятом для расчетов значении W = 2(нанесено толстой линией) все волны устойчивы.

На рис. 5 приведены зависимости, аналогичные представленным на рис. 1–3, рассчитанные при большем значении зарядового параметра Wдля волновых чисел k = 4 и 5. Видно, что с увеличением W растут и расчётные значения E_n .

Расчёты показывают, что с увеличением скорости относительного движения струи и среды амплитудные значения нормальной компоненты безразмерной напряженности электростатического поля растут незначительно. Например, при увеличении параметра Вебера We от 0,1 до 1 амплитудные значения E_n увеличиваются примерно на восемь процентов.

Изменение радиуса струи сказывается лишь на положении критической для зажигания коронного разряда напряженности электрического

Рис. 1. Зависимость нормальной компоненты безразмерной напряжённости электрического поля собственного заряда струи на ее поверхности, по которой бегут осесимметричные волны (m = 0), от продольной координаты z при $\rho_2 = 0,001$, W = 0,5 (тонкая линия); 1,1; 1,5, 2 (самая толстая линия): (a) k = 3; (б) k = 4. При изменении зарядового параметра W от 0,5 до 2 толщина линий на рисунке увеличивается.

Рис. 2. То же, что на рис. 1, но для неосесимметричных волн с m = 1 (изгибных).

Рис. 3. То же, что на рис. 1, но для неосесимметричных волн с m = 2 (изгибно-деформационных).

Рис. 4. Зависимости критического для реализации неустойчивости заряженной поверхности струи значения числа Вебера We от волнового числа k для волн с различной симметрией: (а) m = 0, рассчитано при W = 0,5 (тонкая линия), по мере увеличения W: 1,1; 1,5, 2 (толстая линия); (б) m = 1 (то же, что на рис. 4а); (в) m = 2, рассчитано при W = 2 (толстая линия), в порядке увеличения W: 2,905; 2,99; 3,001; 3,5; 4.

Рис. 5. Зависимости, аналогичные приведенным на рис. 1–3, но рассчитанные для неосесимметричных волн с m = 2 (изгибно-деформационных) при W = 4 для волновых чисел k = 4 и 5.

поля, которая повышается с увеличением радиуса, асимптотически стремясь к значению критической для зажигания коронного разряда напряженности электрического поля у плоской поверхности [14] (с уменьшением значимости кривизны поверхности самой струи).

Видно, что для волн с произвольной симметрией существуют диапазоны значений электрических зарядов, приходящихся на единицу длины струи, в которых нормальная компонента напряженности электростатического поля собственного заряда превышает критическую для зажигания коронного разряда на поверхности струи.

ЗАКЛЮЧЕНИЕ

Нормальная компонента напряжённости электростатического поля в окрестности заряженной струи, по которой бегут волны конечной амплитуды, может превышать критическое значение для зажигания коронного разряда в окрестности струи при докритических значениях заряда, приходящегося на единицу длины струи.

ЛИТЕРАТУРА

- Ентов В.М., Ярин А.Л. Динамика свободных струй и пленок вязких и реологически сложных жидкостей. Итоги науки и техники. Сер. "Механика жидкости и газа". ВИНИТИ. 1984, 17, 112–197.
- 2. Ширяева С.О., Григорьев А.И., Волкова М.В. Спонтанный капиллярный распад заряженных струй. Ярославль: Изд. ЯрГУ, 2007. 340 с.
- 3. Eggers J., Willermaux E. Physics of Liquid Jets. *Rep. Prog. Phys.* 2008, 71, №036601, 1–79.
- Коровин В.М. Влияние магнитного поля с винтовыми силовыми линиями на капиллярную неустойчивость конфигурации магнитных жидкостей с цилиндрической поверхностью раздела, окружающей токонесущий проводник. *ЖТФ*. 2006, **76**(8), 1–8.
- 5. Григорьев А.И., Ширяева С.О., Воронина Н.В., Егорова Е.В. Об осцилляциях и спонтанном распаде заряженных жидких струй. *ЭОМ*. 2006, **42**(6), 23–34.
- Shiryaeva S.O., Grigor'ev A.I. On the Stability of a Bending Mode of a Charged Jet of Viscous Dielectric Liquid with the Ultimate Electroconductivity in a

Collinear Electric Field. *Surface Engineering and Applied Electrochemistry*. 2011, **47**(2), 132–138.

- Grigor'ev A.I., Voronina N.V., Shiryaeva S.O. Degenerated Internal Nonlinear Resonance Interaction of the Waves on the Surface of an Uncharged Dielectric Jet in a Longitudinal Electrostatic Field. *Surface Engineering and Applied Electrochemistry*. 2011, 47(3), 235–241.
- Ширяева С.О., Григорьев А.И., Волкова М.В. О возможности зажигания коронного разряда в окрестности нелинейно-осциллирующей во внешнем электростатическом поле электропроводной капли. *ЖТФ*. 2005, **75**(7), 40–47.
- Григорьев А.И., Коромыслов В.А., Ширяева С.О. О коронном разряде у поверхности нелинейноосциллирующего во внешнем электростатическом поле слоя воды на поверхности тающей градины. ЭОМ. 2010, 46(2), 41–49.
- Коромыслов В.А., Григорьев А.И., Ширяева С.О., Жигалко Ю.Н. Нелинейный расчёт напряжённости электрического поля на поверхности тающей градины в условиях грозового облака. *ЖТФ*. 2011, 81(4), 35–44.

- Григорьев А.И., Петрушов Н.А., Ширяева С.О. Нелинейный расчёт напряженности электрического поля в окрестности заряженной струи, движущейся относительно материальной среды. ЭЖ «Исследовано в России». <u>http://zhurnal.ape.relarn.</u> <u>ru/articles/2012/010.pdf</u>. 2012. С. 150–159.
- Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 592 с.
- 13. Григорьев А.И. Электростатическая неустойчивость сильно заряженной струи электропроводной жидкости. ЖТФ. 2009, 79(4), 36–45.
- Александров А.Ф., Бычков В.Л., Грачев Л.П. и др. Ионизация воздуха в околокритическом электрическом поле. ЖТФ. 2006, 76(3), 38–43.

Поступила 04.05.12

Summary

Calculation is made of the electric field intensity of a self-charge in the vicinity of a continuous cylindrical jet of a liquid on the surface of which the waves with finite amplitude of an arbitrary symmetry are running.

Keywords: jet, charge, field strength, nonlinear capillary waves, corona discharge.