Изменение электрофизических характеристик высоковольтных импульсных конденсаторов при различных модификациях обкладок

В. И. Гунько, А. Я. Дмитришин, Л. И. Онищенко, С. О. Топоров

Институт импульсных процессов и технологий НАН Украины, пр. Октябрьский, 43-А, г. Николаев, 54018, Украина, <u>dphc@iipt.com.ua</u>

Рассмотрены результаты теоретических расчетов и экспериментальных исследований изменения электрофизических характеристик (емкости, тангенса угла потерь, электрического сопротивления изоляции, кратковременной и длительной электрической прочности) высоковольтных импульсных конденсаторов с пленочным диэлектриком при различных вариантах конструкции обкладок.

УДК 621.319.4

введение

Проведенные ранее исследования показали, что применение в конструкции высоковольтных импульсных конденсаторов (ВИК) пленочного диэлектрика, пропитанного неполярной маловязкой жидкостью, позволяет повысить по сравнению с бумажно-плёночным диэлектриком от 1,3 до 2 раз удельную запасаемую энергию конденсатора при одинаковом ресурсе [1]. Повышение удельной запасаемой энергии ВИК достигалось за счет увеличения рабочей напряженности электрического поля в диэлектрике конденсатора, так как пленочный диэлектрик обладает наиболее высокой электрической прочностью по сравнению с традиционно применяющимися в конденсаторостроении ВИК бумажным или комбиниробумажно-пленочным ванным диэлектриком. Вместе с тем, как показывает опыт работ, повышение удельной запасаемой энергии конденсаторов возможно и за счет уменьшения их массогабаритных показателей.

ПОСТАНОВКА ПРОБЛЕМЫ

Одним из путей снижения массогабаритных показателей высоковольтных импульсных конденсаторов является использование в конструкции секции конденсатора металлизированных обкладок, представляющих собой напыленные на диэлектрик тонкие металлические слои алюминия или цинка, которые примерно от 400 до 600 раз тоньше применяемых в конструкции ВИК фольговых обкладок [2-4]. Как показал проведенный анализ научно-технической информации, наличие металлизированных обкладок в передовых конструкциях современных ВИК с пленочным диэлектриком позволяет поднять уровень рабочей напряжённости электрического поля в диэлектрике до 350 кВ/мм и достичь удельной запасаемой энергии конденсатора 0,9 Дж/г при ресурсе конденсатора 10⁴ зарядовразрядов или 1,6 Дж/г при ресурсе 10³ зарядовразрядов [5–7].

Кроме того, такой тип обкладок позволяет обеспечить возможность самовосстановления электрической прочности конденсатора, так как при локальном пробое диэлектрика в местах пониженного значения электрической прочности возникает большая величина плотности тока пробоя и выделяется энергия, достаточная для локального выгорания тонкой металлизированной обкладки вокруг канала пробоя. Образуемая таким образом зона деметаллизации изолирует место пробоя от остальной части обкладки, и конденсатор восстанавливает свою электрическую прочность.

Цель данной работы – оценить влияние введения в конструкцию секции металлизированных обкладок на электрофизические характеристики (емкость, тангенс угла потерь, электрическое сопротивление изоляции, кратковременную и длительную электрическую прочность) ВИК с пленочным диэлектриком.

АНАЛИЗ РАСЧЕТНЫХ ЭЛЕКТРОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ВИК

Сравнительный анализ пленочных диэлектрических систем секций конденсаторов с обкладками из металлической фольги (рис. 1) и с металлизированными обкладками (рис. 2) показывает, что в пленочной диэлектрической системе секции с металлизированными обкладками на одну прослойку жидкого диэлектрика между плёнками и обкладками меньше, чем в диэлектрике с фольговыми обкладками. Проанализируем, к чему это приводит.

С учетом прослоек пропитывающей жидкости между слоями пленки фактическая толщина диэлектрика *d* при применении фольговых обкладок определяется по формуле [8]:

$$d = \frac{d_{\rm H}}{K_3},\tag{1}$$

где $d_{\rm H}$ – номинальная толщина диэлектрика, мкм; K_3 – коэффициент запрессовки диэлектрика.

Суммарная толщина прослоек жидкости в диэлектрике

$$d_{\rm w} = d - d_{\rm H}.\tag{2}$$

Толщина одной прослойки жидкости

$$d_{\mathrm{m1}} = \frac{d_{\mathrm{m}}}{n},\tag{3}$$

где *n* – число прослоек жидкости в диэлектрике.

Таким образом, фактическая толщина диэлектрика с металлизированными обкладками *d'* будет уменьшена:

$$d' = d - d_{\alpha c1}.$$
 (4)

Уменьшение фактической толщины диэлектрика при неизменных номинальной толщине диэлектрика и толщине слоя жидкого диэлектрика приводит к увеличению коэффициента запрессовки K'_3 при металлизированных обкладках:

$$K'_{3} = \frac{d_{_{\rm H}}}{d'} = \frac{d_{_{\rm H}}}{d - d_{_{_{\rm H}}}}.$$
 (5)

Рис. 1. Пленочная диэлектрическая система секции конденсатора с обкладками из металлической фольги. *1* – полимерная пленка; *2* – фольговая обкладка; *3* – слой жидкого диэлектрика.

Рис. 2. Пленочная диэлектрическая система секции конденсатора с металлизированными обкладками. 1 – полимерная пленка; 2 – полимерная пленка со слоем металлизации; 3, 4 – слой жидкого диэлектрика.

В настоящее время в ИИПТ НАН Украины при создании высоковольтных импульсных конденсаторов на основе плёночных диэлектрических систем для обеспечения качественной пропитки выбран коэффициент запрессовки, равный 0,83. На основе указанных формул для применяемых в конструкциях создаваемых конденсаторов плёночных структур получено, что коэффициент запрессовки в случае металлизированных обкладок будет равен 0,87. По формулам, приведенным в [8], можно вычислить значения эквивалентной относительной диэлектрической проницаемости є эквивалентного тангенса угла потерь tgб_{экв} диэлектрических систем с фольговыми и металлизированными обкладками с коэффициентами запрессовки 0,83 и 0,87 соответственно.

Значения эквивалентной относительной диэлектрической проницаемости и тангенса угла потерь определялись по формулам:

$$\varepsilon_{_{3KB}} = \frac{d}{\frac{d_{_{H1}}}{\varepsilon_1} + \frac{d_{_{H2}}}{\varepsilon_2} + \frac{d_{_{\mathfrak{K}}}}{\varepsilon_{_{\mathfrak{K}}}}},$$
(6)

где $d_{\rm H1}$, $d_{\rm H2}$ – суммарная толщина первой и второй полимерных пленок соответственно, мкм; ε_1 , ε_2 – относительная диэлектрическая проницаемость первой и второй полимерных пленок соответственно; $\varepsilon_{\rm ж}$ – относительная диэлектрическая проницаемость пропитывающего диэлектрика;

$$tg\delta_{_{3KB}} = \frac{x \cdot \varepsilon_{_{3KB}}}{\varepsilon_1} \cdot tg\delta_1 +$$

$$+ \frac{(1-x) \cdot \varepsilon_{_{3KB}}}{\varepsilon_2} \cdot tg\delta_2 + \frac{(1-K_3) \cdot \varepsilon_{_{3KB}}}{\varepsilon_{_{3K}}} \cdot tg\delta_{_{3K}},$$
(7)

где $tg\delta_1$, $tg\delta_2$ – тангенс угла потерь первой и второй полимерных пленок соответственно; $tg\delta_{\pi}$ – тангенс угла потерь пропитывающего диэлектрика; *х* – относительное содержание одного типа пленки в твердом диэлектрике,

$$x = \frac{d_{\rm H1}}{d_{\rm H}}.$$
 (8)

Формулы (6) и (7) приведены для диэлектрика с фольговыми обкладками, для диэлектрика с металлизированными обкладками в формуле (6) d заменяется на d', d_{π} – на $d'_{\pi} = d_{\pi} - d_{\pi 1}$, а в формуле (7) K_3 – на K'_3 соответственно.

Результаты расчета по оценке влияния введенных металлизированных обкладок на электрофизические параметры диэлектрических систем ВИК, создаваемых ИИПТ, приведены в табл. 1.

При анализе данных, приведенных в таблице, видно, что при введении металлизированных об-

Тип диэлектрика	<i>d</i> _н , мкм	Пропитка	Фольговые обкладки (<i>K</i> ₃ = 0,83)		Металл об (<i>К</i>	изированные бкладки 3 = 0,87)	Δε _{экв} , %	$\Delta tg \delta_{_{3KB}},$ %
			ε _{экв}	tgδ	ε′ _{экв}	tg′δ		
$\Pi_1 12 \Pi_2 6 \Pi_1 12$	30		2,320	9,369·10 ⁻⁴	2,327	9,28·10 ⁻⁴	+0,3	-0,95
$\Pi_1 12 \Pi_2 10 \Pi_1 12$	34	T-1500	2,382	1,291·10 ⁻³	2,391	1,284·10 ⁻³	+0,38	-0,54
$\Pi_1 12 \Pi_2 15 \Pi_1 12$	39		2,444	1,652·10 ⁻³	2,457	1,649·10 ⁻³	+0,53	-0,5
$\Pi_1 12 \Pi_2 6 \Pi_1 12$	30		2,386	9,567·10 ⁻⁴	2,377	9,43·10 ⁻⁴	-0,38	-1,43
$\Pi_1 12 \Pi_2 10 \Pi_1 12$	34	ПМС 20	2,451	1,322·10 ⁻³	2,444	1,308·10 ⁻³	-0,29	-1,06
$\Pi_1 12 \Pi_1 12 \Pi_1 12$	36	111viC-20	2,259	$2,41 \cdot 10^{-4}$	2,245	2,3.10-4	-0,6	-4,5
$\Pi_1 12 \Pi_2 15 \Pi_1 12$	39		2,517	1,695.10-3	2,513	1,681.10-3	-0,16	-0,83

Таблица 1. Результаты расчета по оценке влияния введенных металлизированных обкладок на электрофизические параметры плёночных диэлектрических систем

Примечание. П₁, П₂ – плёнка полипропиленовая, полиэтилентерефталатная соответственно; цифра, стоящая после обозначения плёнки, – толщина одного листа плёнки в мкм; Т-1500 – трансформаторное масло; ПМС-20 – полиметилсилоксановая жидкость; $\Delta \varepsilon_{3KB}$ – относительное изменение эквивалентной относительной диэлектрической проницаемости; $\Delta tg \delta_{3KB}$ – относительное изменение эквивалентного тангенса угла потерь.

кладок параметры и характеристики диэлектрических систем изменяются незначительно.

При определении достижимого уровня повышения энергоемкости ВИК на основе пленочных диэлектрических систем за счет введения в конструкцию секции металлизированных обкладок в качестве функции отклика бралась емкость секции – какой станет емкость конденсатора, если в его секцию, при неизменной толщине последней, вместо двух фольговых обкладок толщиной 9 мкм каждая ввести две металлизированные обкладки с толщиной слоя металлизации по 0,014 мкм. Толщина слоя металлизации выбрана по рекомендациям работ [4, 5].

Снижение толщины обкладки секции с 9 до 0,014 мкм, то есть уменьшение толщины почти в 640 раз, приводит к значительному увеличению её активного сопротивления, а соответственно и самого конденсатора в целом, что накладывает определённые ограничения на режим его работы.

В результате проведенных авторами исследований установлено, что для ВИК, эксплуатирующихся в нормальных климатических условиях, с рабочим напряжением до 10 кВ, в конструкции которых задействовано большое количество параллельно соединенных секций, при частоте следования зарядов-разрядов до 0,1 Гц возрастание активного сопротивления не приводит к значительному перегреву конденсатора.

Для конденсаторов с номинальным напряжением выше 10 кВ, когда необходимо применять в его конструкции большое число последовательных соединений групп параллельно соединенных секций, обеспечение теплового баланса конденсатора достигается только при работе с низкой частотой следования зарядов-разрядов.

При создании конденсаторов с частотой следования зарядов-разрядов свыше 0,1 Гц целесообразно применять диэлектрические системы одновременно с фольговыми и металлизированными обкладками (рис. 3).

Рис. 3. Пример расположения фольговых и металлизированной обкладок в секциях конденсатора. *1* – полимерная пленка; 2 – фольговая обкладка; 3 – полимерная плёнка со слоем металлизации 4.

При таком конструктивном решении металлизированная обкладка играет роль так называемой «плавающей» обкладки, позволяющей выравнивать электрическое поле на ее краю. В зависимости от количества «плавающих» обкладок, например одна или две, конденсаторная секция преобразуется в два или три последовательно соединенных емкостных элемента, и разрядный ток протекает только по фольговым обкладкам.

Результаты расчетов по определению запасаемой энергии высоковольтных импульсных

Таблица 2. Результаты расчета по определению запасаемой энергии ВИК, в конструкциях секций которых применены металлизированные обкладки, в сравнении с фольговыми

	Тип диэлектрика	Пропитка	U _н , кВ	Тип обкладки							
d _н , мкм				фольговые		металлизированные			фольговые и «плавающие»		
				С _н , мкФ	<i>W</i> _к , Дж	С _н , мкФ	W _к , Дж	ΔW, %	<i>С</i> _н , мкФ	<i>W</i> к, Дж	ΔW, %
30	П ₁ 12П ₂ 6П ₁ 12	T-1500	6	200,0	3600	280,0	5040,0	40,0	240,0	4320,0	20,0
34	П ₁ 12П ₂ 10П ₁ 12		25	5,0	1562	7,2	2263,0	44,8	6,1	1906,2	22,0
34	П ₁ 12П ₂ 10П ₁ 12	ПМС-20	30	1,2	540	1,6	733,5	35,8	1,4	630,0	16,7
39	П ₁ 12П ₂ 15П ₁ 12	T-1500	50	1,0	1250	1,4	1736,5	38,9	1,22	1525,0	22,0
36	$\Pi_1 12 \Pi_1 12 \Pi_1 12$	ПМС-20	50	0,5	625	0,7	850,0	36,0	0,59	737,5	18,0
36	П ₁ 12П ₁ 12П ₁ 12		100	0,1	500	0,14	745,0	40,0	0,12	600,0	20,0

Примечание. ΔW – относительное изменение запасаемой энергии конденсатора.

Рис. 4. Варианты расположения обкладок и слоев пленочного диэлектрика в макетах секций. *1* – полимерная пленка; *2* – фольговая обкладка; *3* – полипропиленовая пленка со слоем металлизации *4*.

конденсаторов, в конструкциях секций которых применены только металлизированные или одновременно фольговые и металлизированные обкладки, в сравнении с фольговыми, приведены в табл. 2.

При анализе данных таблицы видно, что применение в конструкции конденсаторов секций металлизированных обкладок приводит к повышению запасаемой энергии конденсатора в среднем на 40%, а с фольговой и «плавающей» металлизированной обкладками – в среднем на 20% по сравнению с конденсаторами на основе фольговых обкладок.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

Для проверки полученных теоретических результатов проводились экспериментальные исс-

Вариант	Тип обкладок	С _с , мкФ	С _{ср} , мкФ	<i>R</i> _{из} , МОм	tg δ	tg δ_{cp}	
1	Металлизированные	1,836		1010 M	0.0025		
	(рис. 4а)	1,810			0,0026		
	-	1,800	1,809	25000	0,0027	0,00256	
		1,767			0,0025		
		1,830			0,0025		
2	Фольговые	1,292			0,0027		
	(рис. 4б)	1,271			0,0026		
		1,319	1,290	12500	0,0026	0,00264	
		1,327			0,0027		
		1,241			0,0026		
3	Металлизированные с «пла-	0,448			0,0026		
	вающей» металлизированной	0,531			0,0025		
	(рис. 4в)	0,461	0,479	25000	0,0026	0,00258	
		0,504			0,0025		
		0,452			0,0027		
4	Фольговые с «плавающей»	0,391			0,0026		
	металлизированной	0,385			0,0028		
	(рис. 4г)	0,411	0,395	12500	0,0026	0,00268	
		0,383			0,0026		
		0,404			0,0028		

Таблица 3. Данные по измерению емкости, тангенса угла потерь и электрического сопротивления изоляции макетов секций с различными вариантами расположения обкладок

Таблица 4. Данные по определению кратковременной электрической прочности макетов секций с различными модификациями обкладок

Вариант	Тип обкладок	Номер	$d_{\scriptscriptstyle \mathrm{H}},$	U_{np} ,	U _{пр. ср.} ,	<i>Е</i> _{пр. ср.} ,
		секции	МКМ	кВ	кВ	кВ/мм
	Металлизированные (рис. 4а)	1		от 12,5 до 14,0		
1		2		от 12,0 до 14,5	13,2	388,2
		3		от 12,0 до 14,0		
	Фольговые	1	24	14,0	13,67	402,1
2	(рис. 4б)	2		13,5		
		3		13,5		
	Металлизированные с «пла- вающей» металлизированной	1	54	от 20,0 до 24,0		
3	(рис. 4в)	2		от 20,0 до 22,0	21,75	319,8
		3		от 20,0 до 24,0		
4	Фольговые с «плавающей» металлизированной (рис. 4г)	1		22,5	22,67	333,4

Рис. 5. Характерные места пробоя секций с металлизированными обкладками.

Рис. 6. Характерные места пробоя секций с фольговыми обкладками: (а) – место пробоя по толщине диэлектрика; (б) – место пробоя на краю обкладки.

Вариант	Тип обкладок	Номер секции	<i>d</i> _н , мкм	<i>Е</i> _р , кВ/мм	Наработка, зарядов- разрядов
		1			разрядов 0.9.10 ³
	Металлизированные (рис. 4а)	2	-	176,5	1.10^{3}
1		3	-		$1.10^{-1.10^{-3}}$
		4			$1,1.10^{3}$
		5			$1,2.10^{3}$
		1			$1,08 \cdot 10^5$
	Фольговые (рис. 4б)	2			$1,08 \cdot 10^5$
2		3			$3,24 \cdot 10^5$
		4			$4,73 \cdot 10^5$
		5	34		$5,04.10^{5}$
	Металлизированные с «плавающей» металлизированной (рис. 4в)	1		147,1	$0,8.10^{3}$
		2			$0,9.10^{3}$
3		3			$0,9.10^{3}$
		4			1.10^{3}
		5			$1,1.10^{3}$
4	Фольговые с «плавающей» металлизированной (рис. 4г)	1			5,58·10 ⁵
		2			6,28·10 ⁵
		3			7,2·10 ⁵
		4			8,43·10 ⁵
		5			9,36·10 ⁵

Таблица 5. Данные ресурсных испытаний макетов секций с разными модификациями обкладок

Рис. 7. Деметаллизация в месте контакта металлизированной обкладки со слоем шоопировки.

Рис. 8. Электрический пробой диэлектрика на краю обкладок секций.

ледования макетов секций с разными модификациями обкладок. При этом были выбраны четыре варианта расположения обкладок и слоев пленочного диэлектрика (рис. 4), то есть для одной и той же диэлектрической системы брались как металлизированные (рис. 4а и в), так и фольговые обкладки (рис. 4б и г). Эти варианты исполнения обкладок секций конденсатора исследовались на макетах цилиндрических секций, которые наматывались одинаковым диаметром.

Данные по измерению емкости, тангенса угла потерь и электрического сопротивления изоляции макетов секций с различными вариантами расположения обкладок приведены в табл. 3.

Из таблицы видно, что у макетов секций, в конструкциях которых применены только металлизированные обкладки (вариант 1), по сравнению с макетами секций с фольговыми обкладками (вариант 2) емкость выше на 40,2 %, а тангенс угла потерь ниже на 3,1%. В случае основной и «плавающей» металлизированных обкладок (вариант 3) по сравнению с применением основной фольговой и «плавающей» металлизированной обкладок (вариант 4) емкость макетов секций выше на 21,3%, а тангенс угла потерь ниже на 3,8%. Электрическое сопротивление изоляции макетов секций с основными металлизированными обкладками выше в два раза, чем у макетов секций с основными фольговыми обкладками. Полученные величины вполне согласуются с данными проведенных теоретических расчётов.

При исследованиях по определению кратковременной электрической прочности макетов секций с металлизированными обкладками (варианты 1 и 3) был зафиксирован эффект самовосстановления электрической прочности диэлектрика макетов секций. Эти макеты секций доводились до электрического пробоя 20 раз, после чего испытания прекращались, так как секции по-прежнему обеспечивали высокую электрическую прочность.

Причем пробои начинались с меньших величин электрической прочности, приведенных в табл. 4, и к концу проведения испытаний секции пробивались при более высоких значениях электрического напряжения. Данный факт позволяет сделать вывод, что вначале отбраковывались слабые места пленочного диэлектрика.

Кратковременная электрическая прочность макетов секций с фольговыми обкладками несколько выше электрической прочности макетов секций с металлизированными обкладками, так как при нанесении слоя металлизации на полимерную пленку снижается электрическая прочность самой пленки.

Дефектация макетов секций с металлизированными обкладками показала множественные места пробоев диэлектрика с деметаллизацией слоя обкладки вокруг места пробоя. При дефектации макетов секций выявлены места пробоя диэлектрика как на краю обкладки, так и по толщине диэлектрика на середине ширины обкладки, и не один из этих пробоев не был преобладающим.

Характерные места пробоя секций с металлизированными обкладками, где видна деметаллизация слоя обкладки вокруг места пробоя, приведены на рис. 5. Наиболее характерные места пробоев секций с фольговыми обкладками приведены на рис. 6.

Данные экспериментальных исследований по определению длительной электрической прочности (ресурсных испытаний) макетов секций с разными модификациями обкладок приведены в табл. 5.

При анализе результатов ресурсных испытаний видно, что все макеты секций с металлизированными обкладками (вариант 1) вышли из строя, имея малую наработку – порядка 10³ зарядов-разрядов. Проведенная дефектация показала, что причиной выхода макетов секций из строя явилась деметаллизация в месте контакта металлизированной обкладки со слоем шоопировки, причем электрическая прочность диэлектрика секций не была нарушена. Деметаллизация в месте контакта металлизированной обкладки со слоем шоопировки показана на рис. 7.

Макеты секций с фольговыми обкладками показали наработку от $1,08 \cdot 10^5$ до $5,04 \cdot 10^5$ зарядов-разрядов (вариант 2) и от $5,58 \cdot 10^5$ до

101

9,36·10⁵ зарядов-разрядов (вариант 4). Проведенная дефектация макетов секций показала, что характерной причиной выхода секций из строя являлся электрический пробой диэлектрика на краю обкладки секции, то есть в местах наибольшей неоднородности электрического поля в секции.

Электрический пробой диэлектрика на краю обкладок секций показан на рис. 8.

выводы

По результатам проведенных исследований можно сделать выводы, что применение металлизированных обкладок в ВИК приводит к:

 увеличению емкости секций в среднем на 20% при применении «плавающей» обкладки и в среднем на 40% – при применении только металлизированных обкладок, что соответственно увеличивает запасаемую энергию ВИК при неизменных габаритах;

незначительному изменению тангенса угла потерь;

 увеличению электрического сопротивления изоляции.

Эффект самовосстановления электрической прочности рабочего диэлектрика секций с металлизированными обкладками повышает надёжность конденсатора в целом.

Применение наряду с фольговыми обкладками «плавающей» металлизированной приводит к повышению ресурса ВИК.

Для исключения деметаллизации металлизированной обкладки в месте контактного перехода обкладка-контактная поверхность площадь контактной поверхности должна быть максимально возможной – такой, чтобы при этом не ухудшались условия пропитки диэлектрика секции, а край металлизированной обкладки в месте контакта должен быть выполнен с утолщением.

ЛИТЕРАТУРА

- Гребенников И.Ю., Гунько В.И., Дмитришин А.Я., Михайлов И.Г., Онищенко Л.И., Фещук Т.А. Исследование зависимости ресурса высоковольтных импульсных конденсаторов с плёночным диэлектриком от режимов эксплуатации. Электротехника. 2006, 6, 36–41.
- 2. Ренне В.Т. Электрические конденсаторы. Л.: Энергия, 1969. 592 с.
- 3. Ренне В.Т. Плёночные конденсаторы с органическим синтетическим диэлектриком. Л.: Энергия, 1971. 240 с.
- Кучинский Г.С., Назаров Н.И. Силовые электрические конденсаторы. М.: Энергоатомиздат, 1992. 320 с.
- Северюхин Д.Я., Коняхин В.Е., Кирьянов В.В. Токонесущая способность металлизированной обкладки импульсных энергоёмких конденсаторов. Электротехника. 1991, 7, 7–10.
- Емельянов О.А. Локальное разрушение тонких металлических плёнок при электродинамических нагрузках. *Журнал технической физики*. 2008, 78(7), 48–55.
- 7. General Atomics Energy Products. High voltage capacitors. <u>http://www.gaep.com/capacitors.html</u>
- Ренне В.Т., Багалей Ю.В., Фридберг И.Д. Расчёт и конструирование конденсаторов. К.: Техника. 1966. 328 с.

Поступила 09.04.12

Summary

The results of theoretical calculations and experimental researches of changing the electrophysical characteristics (capacity, loss tangent, resistance of insulation, short-time and long-time dielectric strength) in highvoltage pulse capacitors with a film dielectric applying different constructions of capacitor's plates, are given.