Волны в стратифицированной по плотности двухслойной жидкости конечной толщины с заряженной границей раздела

А. И. Григорьев, М. С. Фёдоров

Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150000, Россия, e-mail: <u>grig@uniyar.ac.ru</u>

В аналитической асимптотической процедуре первого порядка малости исследованы закономерности реализации волнового движения в двухслойной стратифицированной по физикохимическим свойствам жидкости со свободной поверхностью и твёрдым дном. Показано, что наличие твердого дна усиливает эффект.

УДК 532.5

Феномен «мертвой воды», феномен передачи импульса между волнами, порождаемыми в многослойной стратифицированной по физикохимическим свойствам жидкости различными поверхностями, исследовался только для бесконечно глубокой жидкости [1]. Физическая суть этого эффекта заключается в том, что в стратифицированной жидкости амплитуды волнового движения, возникающего на границе стратификации, могут существенно превышать амплитуды волн на свободной поверхности [1-2], и энергия, например винтов судна, идёт на раскачку волн на границе стратификации, тогда как на поверхности волнение остаётся малозначительным, а судно «вмерзает» в поверхность спокойной воды. В естественных условиях феномен для гравитационных волн наблюдается в северных морях при таянии льдов, когда на поверхности солёной воды образуется лужа не смешивающейся с ней более лёгкой пресной. Этот феномен вызывает интерес [3-6] в связи с предсказанием существования аналогичного эффекта в диапазоне капиллярных волн. Наличие на одной из границ электрического заряда приводит к смещению области реализации эффекта в сторону реальных значений коэффициента поверхностного натяжения [3, 7]. Влияние на эффект наличия твёрдого дна, хотя физически и очевидно, до сих пор не исследовано.

1. ФОРМУЛИРОВКА ПРОБЛЕМЫ

Пусть имеются два слоя идеальных несжимаемых несмешиваемых жидкостей, из них верхний – диэлектрик с диэлектрической проницаемостью ε , характеризуется плотностью ρ_1 и толщиной h_1 , а аналогичные характеристики нижнего идеального проводника, лежащего на твёрдом дне слоя, – ρ_2 , h_2 , причем $\rho_2 > \rho_1$. Введём декартову систему координат, ось ОZ которой направлена вверх против силы тяжести ($\mathbf{g} \parallel -\mathbf{e}_z$, а \mathbf{e}_z – орт декартовой системы координат), а плоскость z = 0 совпадает с границей раздела слоёв в невозмущённом состоянии. При этом поверхность дна описывается уравнением $z = -h_2$; верхний слой занимает пространство $0 \le z \le h_1$, а нижний – $h_2 \le z \le 0$. На границе раздела жидкостей равномерно распределен электрический заряд, создающий в области пространство z > 0 электрическое поле с напряженностью E_* .

Проанализируем взаимодействие капиллярно-гравитационных волн, существующих в описанной системе на свободной поверхности и границе раздела сред, которые характеризуются коэффициентами поверхностного натяжения σ_1 и σ_2 соответственно.

Уравнения, описывающие форму возмущённых волновым движением свободной поверхности верхней жидкости и границы раздела слоёв, запишем в виде

$$F_1(x, z, t) \equiv z - h_1 - \xi_1(x, t) = 0;$$

$$F_2(x, z, t) \equiv z - \xi_2(x, t) = 0,$$

где $\xi_1(x, t)$ и $\xi_2(x, t)$ – малые отклонения от невозмущённых уровней $z = h_1$ и z = 0 соответственно ($|\xi_1| << h_1$, $|\xi_2| << h_2$), амплитуда которых ($|\xi_1| \sim |\xi_2|$) принимается в качестве малого параметра задачи.

Математическая формулировка линеаризованной задачи имеет вид

$$\frac{\partial \mathbf{v}_j}{\partial t} = -\nabla \left(\frac{P_j}{\rho_j} \right) + \frac{\mathbf{g}}{\rho_j}; \quad div \mathbf{v}_j = 0; \quad (j = 1; 2); \Delta \Phi = 0;$$
$$z = -h_2: \quad (\mathbf{n}_2, \mathbf{v}_2) = 0;$$

$$z = h_1 + \xi_1(x, t); \quad \frac{\partial F_1}{\partial t} + (\mathbf{v}_1, \nabla) F_1 = 0; \quad P_1 - P_a - P_{\sigma_1} + P_{1_E} = 0;$$

Puc. 1. Зависимости отношения амплитуд γ_j от толщины нижнего слоя h_2 и электрического параметра W: (a) – для первого корня дисперсионного уравнения (для которого реализуется режим «однородной» жидкости); (б) – для второго корня дисперсионного уравнения (для которого реализуется режим «мертвой воды»), рассчитанные при $\rho_1 = 1$; $\rho_2 = 1,02$; g = 1; $\sigma_1 = 60$; $\sigma_2 = 1$; $h_1 = 1$; k = 2; $\varepsilon = 80$.

Рис. 2. Зависимости отношения амплитуд γ_j от волнового числа k и толщины верхнего слоя жидкости h_1 : (a) – для первого корня дисперсионного уравнения (для которого реализуется режим «однородной» жидкости); (б) – для второго корня дисперсионного уравнения (для которого реализуется режим «мертвой воды»); (в) – то же, что на рис. 26, но приведенное в большем масштабе, рассчитанные при $\rho_1 = 1$; $\rho_2 = 1, 02$; g = 1; $\sigma_1 = 60$; $\sigma_2 = 1$; $h_2 = 1$; W = 3; $\varepsilon = 80$.

Puc. 3. Зависимости отношения амплитуд γ_j от плотности нижней жидкости ρ_2 и её толщины h_2 : (a) – для первого корня дисперсионного уравнения (для которого реализуется режим «однородной» жидкости); (б) – для второго корня дисперсионного уравнения (для которого реализуется режим «мертвой воды»), рассчитанные при $\rho_1 = 1$; g = 1; $\sigma_1 = 60$; $\sigma_2 = 1$; $h_1 = 1$; k = 2; W = 3; $\varepsilon = 80$.

Рис. 4. Зависимости отношения амплитуд γ_i от величины коэффициента поверхностного натяжения границы раздела жидкостей σ_2 и толщины нижнего слоя жидкости h_2 : (а) – для первого корня дисперсионного уравнения (для которого реализуется режим «однородной» жидкости); (б) – для второго корня дисперсионного уравнения (для которого реализуется режим «мертвой воды»), рассчитанные при $\rho_1 = 1$; $\rho_2 = 1,02$; g = 1; $\sigma_1 = 60$; $h_1 = 1$; k = 2; W = 3; $\varepsilon = 80$.

Рис. 5. Зависимости отношения амплитуд γ_j от плотности нижней жидкости ρ_2 и толщины слоя верхней жидкости h_1 : (а) – для первого корня дисперсионного уравнения (для которого реализуется режим «однородной» жидкости); (б) – для второго корня дисперсионного уравнения (для которого реализуется режим «мертвой воды»), рассчитанные при $\rho_1 = 1$; g = 1; $\sigma_1 = 60$; $\sigma_2 = 1$; $h_2 = 1$; k = 2; W = 3; $\varepsilon = 80$.

$$z = \xi_2: \frac{\partial F_2}{\partial t} + (\mathbf{v}_2, \nabla) F_2 = 0; (\mathbf{n}_1, \mathbf{v}_1) = -(\mathbf{n}_1, \mathbf{v}_2);$$
$$P_2 - P_1 - P_{\sigma_2} + P_{2\varepsilon} = 0; \ \Phi = \text{Const}; \ z \to \infty:$$
$$\nabla \Phi \to -\mathbf{E}_*; \ t = 0;$$
$$\xi_1(x, t) = \zeta_1 \cos(k_1 x); \ \partial_t \xi_1(x, t) = 0;$$

 $\xi_2(x, t) = \xi_2 \cos(k_2 x); \ \partial_t \xi_2(x, t) = 0,$

где \mathbf{v}_j – поля скоростей в верхней и нижней жидкостях; Φ – электрический потенциал; \mathbf{n}_j – вектора нормали к границам раздела; P_j – гидродинамические давления в слое верхней и нижней жидкости; P_a – давление атмосферное; P_{j_E} – давление электрического поля; $P_{\sigma_j} = \sigma_j \cdot div\mathbf{n}_j$ – капиллярные давления на свободной поверхности и границе раздела сред соответственно.

2. РЕШЕНИЕ ЗАДАЧИ

Решение сформулированной задачи в первом порядке малости по безразмерной амплитуде не представляет трудностей и может быть найдено по аналогии с [3–6]. Выражения для возмущений ξ_i запишем в виде

$$\xi_1 = \delta(t) \exp(ikx) + (k.c.); \ \xi_2 = \eta(t) \exp(ikx) + (k.c.).$$

Здесь и далее аббревиатура (*k.c.*) обозначает слагаемые, комплексно сопряжённые к выписанным. Подстановка в систему проекта решения в виде $\delta(t) = d \exp(i \omega t)$, $\eta(t) = c \exp(i \omega t)$ позволяет получить выражение для отношения амплитуд волн на различных поверхностях раздела:

$$\frac{\eta(t)}{\delta(t)} \equiv \gamma_j(\omega_j) \equiv -\frac{\left(\frac{kW(\varepsilon-1)^2}{\varepsilon[\varepsilon + th(kh_1)]} + g\rho_1 - k^2\sigma_1 - \frac{\rho_1}{k th(kh_1)}\omega_j^2\right)}{\left(\frac{\rho_1}{k sh(kh_1)}\omega_j^2 + \frac{kW(\varepsilon-1)}{\varepsilon[\varepsilon + th(kh_1)]ch(kh_1)}\right)};$$

$$(j = 1; 2);$$

$$W \equiv \varepsilon E_*^2 / 4\pi,$$

где индекс *j* нумерует корни дисперсионного уравнения, которое имеет биквадратный вид:

$$\omega^{4} + \frac{A_{2}}{A_{1}} \cdot \omega^{2} + \frac{A_{3}}{A_{1}} = 0;$$

$$A_{1} = -\frac{\rho_{1}^{2}}{k^{2} \mathrm{sh}(kh_{1})} + \frac{\rho_{1}}{k \mathrm{th}(kh_{1})} \left(\frac{\rho_{1}}{k \mathrm{th}(kh_{1})} + \frac{\rho_{2}}{k \mathrm{th}(kh_{2})}\right);$$

$$A_{2} = -\left(gk\rho_{1} + k^{3}\sigma_{1} - \frac{k^{2}W(\varepsilon - 1)^{2}}{\varepsilon[\varepsilon + \mathrm{th}(kh_{1})]}\right) \left(\frac{\rho_{1}}{\mathrm{th}(kh_{1})} + \frac{\rho_{2}}{\mathrm{th}(kh_{2})}\right) + \frac{\rho_{1}}{\mathrm{th}(kh_{1})} \left(gk(\rho_{1} - \rho_{2}) - k^{3}\sigma_{2} + \frac{k^{2}W[1 + \varepsilon \mathrm{th}(kh_{1})]}{\varepsilon[\varepsilon + \mathrm{th}(kh_{1})]}\right);$$

$$\begin{split} A_{3} &= -\left(gk\rho_{1} - k^{3}\sigma_{1} + \frac{k^{2}W(\varepsilon - 1)^{2}}{\varepsilon\left[\varepsilon + \operatorname{th}(kh_{1})\right]}\right) \\ &\left(gk\left(\rho_{1} - \rho_{2}\right) - k^{3}\sigma_{2} + \frac{k^{2}W\left[1 + \varepsilon\operatorname{th}(kh_{1})\right]}{\varepsilon\left[\varepsilon + \operatorname{th}(kh_{1})\right]}\right) + \\ &+ \left(\frac{k^{2}W(\varepsilon - 1)}{\varepsilon\left[\varepsilon + \operatorname{th}(kh_{1})\right]\operatorname{ch}(kh_{1})}\right)^{2}. \end{split}$$

3. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ РАСЧЁТОВ

В рассматриваемой системе могут реализовываться два режима волновых движений, соответствующих двум корням – $\omega_1^2(k)$ и $\omega_2^2(k)$ биквадратного дисперсионного уравнения:

$$\omega_1^2 = -\frac{1}{2A_1} \left(A_2 + \sqrt{A_2^2 - 4A_1 A_3} \right)^{\frac{1}{2}}$$
$$\omega_1^2 = -\frac{1}{2A_1} \left(A_2 - \sqrt{A_2^2 - 4A_1 A_3} \right)^{\frac{1}{2}}$$

В одном из режимов амплитуда внутренней волны (волны на границе стратификации) $\eta(t)$ меньше амплитуды $\delta(t)$ внешней волны (на свободной поверхности) примерно в $\exp(-kh_1)$ раз, то есть волновое возмущение экспоненциально затухает по мере увеличения глубины, как в однородной жидкости. Второй режим, при котором амплитуда внутренней волны $\eta(t)$ существенно превышает амплитуду внешней $\delta(t)$, характерен именно для стратифицированной жидкости. Волновое движение в этом режиме и получило название эффекта «мёртвой воды».

На рис. 1а и б приведены зависимости отношения амплитуд γ_j от глубины нижнего слоя жидкости h_2 и параметра W в двух описанных режимах волнового движения. Видно, что как в режиме «мёртвой воды», так и в режиме «однородной» жидкости отношение амплитуд заметно зависит от глубины h_2 только при малых h_2 , и эта зависимость приходится на длинные волны (малые значения волнового числа). От параметра Wотношение амплитуд γ_i практически не зависит.

Из рис. 2, на котором приведена зависимость отношения амплитуд γ_j от толщины верхнего слоя h_1 и волнового числа k, видно, что в режиме «однородной» жидкости заметно зависит от h_1 и k только при малых их величинах, а в режиме «мёртвой воды» сильная зависимость от h_1 и k имеет место при больших h_1 и k. На рис. 2в приведена та же зависимость, что и на рис. 2б, но в более крупном масштабе.

Из рис. З видно, что отношение амплитуд γ_j убывает с ростом плотности нижней среды ρ_2 в режиме «однородной» жидкости и увеличивается в режиме «мёртвой воды».

На рис. 4 приведены зависимости отношения амплитуд волн γ_i от толщины нижнего слоя h_2 и

коэффициента поверхностного натяжения поверхности раздела σ_2 . Несложно видеть, что в режиме «однородной» жидкости зависимость от σ_2 отсутствует, а с уменьшением толщины h_2 отношение амплитуд уменьшается. В режиме «мёртвой воды» отношение амплитуд растет с уменьшением и h_2 , и σ_2 .

На рис. 5 приведены зависимости отношения амплитуд волн γ_j от толщины верхнего слоя h_1 и плотности нижней жидкости ρ_2 . Зависимости от плотности жидкости оказываются слабыми в обоих случаях, а зависимости от толщины слоя верхней жидкости – противоположными.

Расчеты показывают, что наличие твердого дна усиливает проявление эффекта «мёртвой воды».

Работа выполнена при поддержке гранта РФФИ № 09-01-00084.

ЛИТЕРАТУРА

- Сретенский Л.Н. О волнах на поверхности раздела двух жидкостей с применением к явлению «мертвой воды». Журнал геофизики. 1934, 4(3), 332–367.
- 2. Сретенский Л.Н. *Теория волновых движений жидкости*. М.: Наука, 1977. 815 с.
- Григорьев А.И., Ширяева С.О., Федоров М.С. Капиллярный аналог эффекта «мертвой воды» в стратифицированной жидкости с заряженной границей раздела сред. *ЖТФ*. 2010, 80(7), 8–17.
- Григорьев А.И., Федоров М.С., Ширяева С.О. Волновое движение в поле силы тяжести на свободной поверхности и на границе стратификации слоисто-неоднородной жидкости. Нелинейный анализ. Изв. РАН. МЖГ. 2010, 74(5), 130–140.
- Ширяева С.О., Григорьев А.И., Фёдоров М.С. Взаимодействие гравитационных волн, бегущих по различным поверхностям раздела в слоистонеоднородной жидкости. Электронный журнал «Исследовано в России». 2010, (20), 260–268. <u>http://zhurnal.ape.relarn.ru/articles/</u>2010/020.pdf.
- Григорьев А.И., Фёдоров М.С., Ширяева С.О. Нелинейный анализ особенностей взаимодействия капиллярных волн конечной амплитуды в слоисто-неоднородной жидкости. ЖТФ. 2011, 81(11), 31–39.
- Григорьев А.И., Фёдоров М.С., Ширяева С.О. Влияние электрического поля на капиллярный эффект «мёртвой воды». ЖТФ. 2012, 82(6), 9–19.

Поступила 12.03.12 Summary

In analytical asymptotical procedure of first power of smallness the regulations of realization of a waves motion are studied in twolayered liquids stratified with regard to their physico-chemical properties with a free surface and hard bottom. It is shown that existence of hard bottom enhances the effect.