ВЛИЯНИЕ ТОПОЛОГИИ ПВХ–СИСТЕМ НА ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ В ОБЛАСТИ СИЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ

Т.Г. Ляшук, Б.Б. Колупаев

Ровенский государственный гуманитарный университет, ул. Остафова, 31, г. Ровно, 33000, Украина, <u>nightquesttg@rambler.ru</u>

Введение

Широкое использование полимерных материалов в электронной промышленности требует поиска новых высокодиэлектрических материалов, исходя из результатов исследования их поведения в сильных электрических полях [1]. В таких условиях эксплуатации одной из основных причин выхода из строя полимерной изоляции является пробой [2]. Поэтому изучение его причин, как и следственных результатов, представляет известный интерес [3]. Следует отметить, что кинетика и причины, приводящие к разрушению электрической прочности полимеров, как и их стадии, рассмотрены в сравнительно большом количестве работ [4]. Однако дальнейшее поведение полимерного материала, который после пробоя находящегося в нем проводника переходит в гетерогенную систему (ГС), в температурных полях исследовано недостаточно.

В связи с вышесказанным, цель работы – изучить поведение в электрическом поле гетерогенной системы и ее топологии, образованной в результате взрыва проводника в полимерной матрице, при последующем нагревании – охлаждении композита с различным содержанием нанодисперсного металла. При этом характерно, что вслед за нарушением диэлектрической прочности кабеля, когда возникает резкое возрастание тока без увеличения приложенного напряжения, следует вторая стадия пробоя – термическое и/или механическое разрушение, приводящее к появлению проводящего канала. Возникающий при этом переход материала в гетерогенную систему требует исследования процессов, связанных с возможным дальнейшим направленным изменением ее электрической прочности, обусловленной структурными факторами материала. Однако изучение микроструктуры (топологии) ГС и ее влияния на электрофизические свойства материала, который испытал электрический пробой, также требуют дальнейшего рассмотрения. Установлено [1], что в результате взрыва проводника в диэлектрике образуются высокодисперсные частицы металла, окруженные полимерной матрицей. При этом частицы дисперсной фазы могут различным образом распределяться в матрице полимера [5]. Для упрощения считаем, что в результате взрыва проводника образовалась система со статистической топологией [6], для которой фазы с диэлектрической проницаемостью є₁ и є₂ занимают соответствующие объемы V_1 и V_2 ($V_0 = V_1 + V_2$ – полный объем). Такой подход позволяет получить усредненные значения диэлектрических характеристик материала:

$$\overline{\varepsilon} = \varepsilon_1 + f_2 \Theta_2 \left(\varepsilon_2 - \varepsilon_1 \right), \tag{1}$$

где *Е* – эффективная диэлектрическая проницаемость;

$$f_2 = V_2/V_0; \ \theta_2 = E_2/E_1; \ E_1 = \frac{1}{V_0} \int_{V_1} E dV; \ E_2 = \frac{1}{V_0} \int_{V_2} E dV.$$

Учитывая, что высокодисперсные частицы металла в виде системы малых сфер (фаза 2), которые распределены в матрице (фаза 1), находятся во внешнем электрическом поле E, согласно [7], имеем

$$\theta_2 = \frac{3\varepsilon_1}{\varepsilon_2 + 2\varepsilon_1},\tag{2}$$

и тогда

$$\overline{\varepsilon} = \varepsilon_1 + 3f_2\varepsilon_1 \frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_2 + 2\varepsilon_1}.$$
(3)

[©] Ляшук Т.Г., Колупаев Б.Б., Электронная обработка материалов, 2011, 47(1), 106–112.

Поскольку электрическое поле, которое индуцируется такой металлической сферой на рас-

стоянии *r* от нее, составляет величину порядка $\frac{R^3}{r^3}E_0\frac{\varepsilon_2-\varepsilon_1}{\varepsilon_2+2\varepsilon_1}$ [2], где *R* – радиус сферы, E_0 – напряженность внешнего поля, r_0 – расстояние, на котором можно пренебречь этим индуцированным полем, получим:

$$r_0 >> R\left(\frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_2 + 2\varepsilon_1}\right)^{\frac{1}{3}}.$$
(4)

Таким образом, при $f_2 \leq \frac{R^3}{r_0^3}$ имеем:

 $f_2 << \left| \frac{\varepsilon_2 + 2\varepsilon_1}{\varepsilon_2 - \varepsilon_1} \right|,\tag{5}$

что соответствует области рассмотренных содержаний ингредиента $|f_2 \le 0.1 \text{ of } \%|$. Учитывая, что для исследуемых систем $\varepsilon_2 > \varepsilon_1$, величины $\overline{\varepsilon}$ для верхней и нижней границ соответственно равны:

$$\overline{\varepsilon}_{e} = \varepsilon_{2} + \frac{f_{1}}{\left(\varepsilon_{1} - \varepsilon_{2}\right)^{-1} + f_{2}\varepsilon_{2}/3},\tag{6}$$

И

$$\overline{\varepsilon}_{\mu} = \varepsilon_1 + \frac{f_2}{\left(\varepsilon_2 - \varepsilon_1\right)^{-1} + f_1 \varepsilon_1 / 3}.$$
(7)

Используя аналитическое представление [8], удалось отделить зависимость $\overline{\epsilon}$ от топологии структуры композита. Суть в том, что введение функций

$$F = 1 - \frac{\overline{\varepsilon}}{\varepsilon_1}, \tag{8}$$

а не отдельно ε_1 и ε_2 для ГС, а также

$$L = \left(1 - \varepsilon_2 / \varepsilon_1\right)^{-1} \tag{9}$$

позволяет рассмотреть F(L) как аналитическую функцию комплексной переменной L. Поскольку композит должен рассеивать энергию, если ее рассеивает хотя бы одна из фаз (1, 2), тогда $Im \overline{\epsilon} > 0$ там, где $Im \varepsilon_1 > 0$. В нашем случае $Im L \neq 0$, тогда Im F(L)/Im L < 0 для $0 \le L \le 1$.

Таким образом, в ГС имеют место диэлектрические потери энергии, при этом, с учетом однородности электрического поля, свободная энергия единицы объема ГС составляет величину [2]:

$$dW = -SdT + \xi d\rho + \frac{1}{4\pi} E dD, \tag{10}$$

где S – энтропия; ξ – химический потенциал; ρ – масса единицы объема вещества. Соответственно при действии на композит температурным полем происходит изменение характеристик на величину при нагревании:

$$dW_{\mu} = -S_{\mu}dT + \xi_{\mu}d\rho + \left(\frac{1}{4\pi}EdD\right)_{\mu}, \qquad (11)$$

и охлаждении:

$$dW_o = -S_o dT + \xi_o d\rho + \left(\frac{1}{4\pi} E dD\right)_o.$$
 (12)

Следовательно, в режиме нагрев-охлаждение композита изменение свободной энергии при постоянном содержании ингредиентов равно:

$$\Delta W = dW_{\mu} - dW_{o} = -\Delta S dT + \Delta \xi d\rho + \Delta \left(\frac{1}{4\pi} E dD\right), \tag{13}$$

где разность ΔS между энтропией состояний характеризует направление процесса; $\Delta \xi$ – движущая сила перехода системы в новое квазиравновесное состояние; $\Delta \left(\frac{1}{4\pi}EdD\right)$ указывает на изменение величины энергии электрического поля, происходящее за счет наличия ГС в поле внешних сих. Знание ее величины позволяет определить диссипацию энергии в композите, находящемся во внешнем переменном (ω) электрическом поле E. Так, мощность, рассеиваемая в единице объема ГС за единицу времени, составляет величину [6]:

$$P = \omega E^2 \overline{\epsilon} tg \delta = cS, \tag{14}$$

где ω – частота; E – напряженность поля; $\overline{\varepsilon} = Re \overline{\varepsilon}$; δ – угол потерь; $\overline{\varepsilon} tg\delta$ зависит от температуры и содержания ингредиентов в системе; c – постоянная; S – площадь кривой, ограниченной $Re \overline{\varepsilon} - tg\delta$.

С помощью полученных аналитических соотношений проанализируем результаты экспериментальных исследований диэлектрических потерь энергии в композите.

Экспериментальная часть

В качестве исходного полимера для проведения исследований был выбран поливинилхлорид (ПВХ) марки ПВХ-С-65 с ММ-1,4 \cdot 10⁵ и T_{a} = 354 К (Каустик, Башкортостан).

Наночастицы меди вводили в ПВХ с помощью взрыва проводника [3], который закорачивали на батарею конденсаторов емкостью 50 мкФ при напряжении 10 кВ. Преимущественный размер частиц наполнителя составляет 13 нм, а его содержание в ПВХ варьировали в диапазоне (0÷0,1) об%.

Диэлектрические свойства ПВХ–систем $\varepsilon', \varepsilon'', tg\delta$ исследовали с помощью моста Р 5083 на частоте 100 кГц в температурном интервале (293 ÷ 393) К при скорости нагрева образца 3 К/мин. В качестве эталона выбран плавленый кварц ($\varepsilon_{\kappa 6} = 3,8$; tg $\delta_{\kappa 6} = 2 \cdot 10^{-4}$). Погрешность измерений не превышала 1% [9].

Результаты и их обсуждение

Ha puc. 1 показана концентрационная зависимость $\varepsilon, \overline{\varepsilon}, \overline{\varepsilon}_{n}, \overline{\varepsilon}_{e}$ и tgδ при T = 293 K. Из приведенных результатов следует, что зависимость $\varepsilon(\phi)$, после первого нагрева (рис. 1,*a*, кривая 2) в диапазоне ($0 \le \phi \le 0,06$) об%, носит нисходящий характер. Однако в диапазоне содержания наполнителя ($0,06 \le \phi \le 0,1$) об% характер зависимости $\varepsilon(\phi)$ инвертируется на противоположный. При этом в области $\phi = 0,0906$ %Cu наблюдается аномальный характер зависимости, соответствующий минимуму величины tgδ (рис. 1,*e*). Характерно, что после второго нагрева образцов (рис. 1,*a*, кривая 3) в диапазоне ($0 \le \phi \le 0,06$) об% наблюдается линейное возрастание величины $\varepsilon(\phi)$, однако в диапазоне ($0,06 \le \phi \le 0,1$) об% такой характер зависимости нарушается. При этом зависимость $\varepsilon(\phi)$ после первого и второго нагрева в диапазоне ($0,07 \le \phi \le 0,1$) об% носит одинаковый *S*-образный характер. Проведенные, согласно соотношению (3), расчеты усредненной диэлектрической проницаемости $\overline{\varepsilon}$ показали, что ее величина незначительно возрастает (рис. 1,*a*) с ростом концентрации нанонаполнителя и находится в пределах между значениями $\overline{\varepsilon}_n$ и $\overline{\varepsilon}_e$ (соотношения 6, 7) (рис. 1,*б*). В случае зависимости tgð(ϕ) для исходного материала, а также после первого и второго нагрева установлено, что ее изменения сохраняются во всем диапазоне концентраций наполнителя (рис. 1,*e*). Однако, как и в случае $\varepsilon(\phi)$ (рис. 1,*a*), наблюдается ярко выраженный минимум этой величины при $\phi = 0,0606\%$ Cu.

При первом нагревании исследуемых образцов при 293 К $\leq T \leq$ 393 К в диапазоне содержания наполнителя ($0 \leq \phi \leq 0.07$) об% – величина площадей, которые пропорциональны величине диссипации энергии *P* (соотношение (14)), увеличивается. Однако при достижении $\phi = 0.08$ об% она имеет

тенденцию к уменьшению (рис. 2,*a*). В процессе последующего охлаждения этих же образцов наблюдается (представлены результаты в виде гистограмм) более равномерное изменение величины P (рис. 2, δ). При последующем нагревании–охлаждении исследуемых образцов имеет место наблюдаемый ранее характер зависимости $P(S) = f(T)|_{0}$, как и в случае первого охлаждения.

Рис. 1. Концентрационные зависимости величин диэлектрических характеристик ГС (ПВХ + Си) при $T=293K: a - \varepsilon(\varphi)(1 - исходный образец, 2 - после первого нагрева, 3 - после второго нагрева,$ $<math>4 - \overline{\varepsilon} (pacчem(3))); \delta - \varepsilon(\varphi)(1 - \overline{\varepsilon}, \overline{\varepsilon}_i (pacчem (3) u (7)), 2 - \overline{\varepsilon}_a (pacчem (6))); в - tg \delta(\varphi)(1 - исходный образец, 2 - после первого нагрева, 3 - после второго нагрева)$

Рис. 2. Гистограммы площадей гистерезисных кривых $\varepsilon' = f(\phi)|_{\tau}$: a – нагрев; б – охлаждение

На рис. 3 приведены в виде гистограмм значения площадей, характеризующих результирующий процесс нагревания—охлаждения образцов при $(0 \le \varphi \le 0.1)$ об% нанодисперсной меди. Как и ранее (рис. 1 и 2), наблюдается нелинейный характер изменения свойств композита.

Полученные ранее результаты (рис. 1–3) позволяют, используя соотношения (14), проследить за характером изменения величин $\overline{\epsilon}tg\delta = f |T|_{\phi}$ и $\overline{\epsilon}tg\delta = \psi |\phi|_{T}$, значения которых представлены в виде гистограмм на рис. 4 и 5. Оказалось, что по мере проведения повторного нагрева композита по-

сле его циклического нагрева-охлаждения происходят релаксационные изменения топологии материала в направлении упорядочения структурообразования системы.

Рис. 3. Гистограммы площадей гистерезисных кривых $tg\delta = f(\phi)|_T$: *a* – нагрев № 1; *б* – охлаждение № 2

Рис. 4. Гистограммы площадей гистерезисных кривых: a, б — $\varepsilon' = f(\phi)|_T$; в, $\varepsilon - \varepsilon'' = f(\phi)|_T$. 1 – нагр. № 1; 2 – охл. № 1; 3 – нагр. № 2; 4 – охл. № 2 Установлено, что при скорости нагрева композита $3^{\text{град}}/_{\text{мин}}$ в рассмотренном диапазоне тем-

ператур не происходит деструкция материала [10], поэтому значение величины $\Delta \left(\frac{1}{4\pi}EdD\right)$ позволяет проанализировать характер изменения ΔS (соотношение (13)). Из условия минимализации ΔW при $d\rho = 0$ (13) следует, что $S_0 < S_i$. В таблице представлены результаты приведенных расчетов, соответствующих величинам, характеризующим электрофизические свойства материала, как следствие его топологических характеристик.

Рис. 5. Гистограммы площадей гистерезисных кривых $\varepsilon' = f(\phi)|_T$: 1 – нагр. № 1; 2 – охл. № 1; 3 – нагр. № 2; 4 – охл. № 2

Значения площадей гистерезисных кривых $\varepsilon'(\varepsilon'', tg\delta) = f(\phi)|_{T(293+378)}$ ПВХ-систем, обусловленных нагревом–охлаждением материала

φ _{οδ} ,%	ε′				ε″				tgδ			
	S _{HAPP.№1}	$S_{_{\alpha \kappa \eta. N \ge 1}}$	$S_{{}_{Harp.N^{o}2}}$	S _{ox1.№2}	S _{HAPP.№1}	S _{oxn.Ne1}	S _{HAPP.№2}	$S_{_{OX_{7}.N^{o}2}}$	S _{Harp.№1}	$S_{_{ox1.N21}}$	S _{HAP} .№2	S _{охл.№2}
0	349,36	357,33	346,31	334,84	28,46	35,18	32,78	35,90	6,28	6,87	6,74	8,32
0,06	375,53	348,22	336,55	351,85	19,32	17,68	14,89	19,22	3,86	3,90	3,69	4,30
0,07	377,56	376,44	356,47	349,27	29,85	37,77	31,31	34,03	5,81	8,18	6,43	7,58
0,08	411,52	478,47	455,77	478,88	142,82	87,62	70,23	91,20	24,18	13,29	10,65	12,99
0,09	410,90	373,02	334,71	351,50	33,66	35,05	23,10	31,94	5,46	7,09	5,32	7,00
0,10	404,04	455,72	445,49	436,48	52,22	67,91	65,96	68,92	9,77	11,45	11,78	12,17

Заключение

Проведенные исследования показывают, что полимерные диэлектрики образуют гетерогенные системы в результате электрического пробоя и взрыва проводника. При этом под действием температурного и переменного электрического поля могут происходить диссипативные процессы в результате нагрева–охлаждения композита. С помощью аналитических соотношений и результатов эксперимента показано, что при этом наблюдается изменение топологии материала и, как следствие, его свойств. С учетом статистического распределения нанодисперсного металла при $\phi \le 0.1 \text{ об\%}$ возможна эксплуатация многожильного электрокабеля за счет направленного воздействия на структуру композита.

ЛИТЕРАТУРА

1. Зельдович Я.Б., Компанеец А.С. Математическая теория горения и взрыва. М.: Наука, 1980.

2. Ландау Л.Д., Лифшиц Е.М. Теория поля. М.: Наука, 1973.

3. Конель Г.И., Фортов В.Е., Разоренов С.В. Ударные волны в физике конденсированного состояния. *УФН*. 2007, **177**(8), 809–803.

4. Регель В.Р., Слуцкер А.И., Тимошевский Э.Е. Кинетическая природа прочности твердых тел. М.: Наука, 1974.

5. Robin T., Souillard B. Concentration – dependent for AC hopping conductivity and permittivity. *Europhys. Lett.* 1993, **22**(9), 729–734.

6. McQuarrie D.A. Statistical Mechanics. N.Y.: Harper and Row. 1976. Chap.13.

7. Kenyon W. Texture effects on megahertz dielectric properties of calcite rock samples. J. Appl. Phys. 1984, **55**(8), 3153–3159.

8. Bergman D.J., Rigorous bounds for the complex dielectric constants of a two – component composite. *Ann. Phys* (New York). 1982, **138**(1), 78–114.

9. Колупаев Б.С. Релаксационные и термические свойства наполненных полимерных систем. Под ред. С.Л. Френкеля. Л.: ЛГУ, 1980.

10. Колупаев Б.Б., Клепко В.В., Лебедев Е.В., Колупаев Б.С. Фононная релаксация и внутреннее трение в гетерогенных системах на основе поливинилхлорида. *Высокомолек. соед. Серия А*, 2010, **52**(2), 249–253.

Поступила 15.07.10

Summary

Electrophysical features of electric cable transiting to a state of the heterogenic polymer system due to the explosion of the conductor were examined. Using cyclic heating-cooling of the composite the changes in it's topology are achieved. This gives us an ability to regulate the dielectric features of the system for it's usage.