ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК УПРУГОСТИ НЕОДНОРОДНЫХ МАТЕРИАЛОВ ДИНАМИЧЕСКИМ МЕТОДОМ

Д.А. Игнатьков

ул. Гагарина, д. 4, кв. 14, 223037, а/г Петришки, Минский р-н, Республика Беларусь <u>dmig@rambler.ru;</u> <u>dm.ignatkov@gmail.com</u>

Введение

Современные технологии модифицирования поверхностных слоёв и нанесения покрытий приводят, как правило, к созданию неоднородных материалов многослойной структуры, у которых характеристики упругости становятся функциями координат упрочняемых изделий. Поскольку модули упругости и коэффициент Пуассона относятся к основным параметрам в расчетах прочности, жесткости, устойчивости, резонансных частот и остаточных напряжений [1, 2], то развитие эффективных методов их определения для материалов многослойной неоднородной структуры является актуальной задачей.

Динамический резонансный метод определения характеристик упругости изотропных материалов регламентирован стандартом [3]. Модули упругости вычисляются по соотношениям, учитывающим линейные размеры образца, резонансные частоты продольных, крутильных и изгибных колебаний, геометрические характеристики поперечного сечения и плотность материала. Для возбуждения резонанса и регистрации резонансных частот применяются различные схемы закрепления образцов (рис. 1). Схема на рис. 1,*а* используется для возбуждения и регистрации собственных продольных колебаний призматических и цилиндрических стержней. Она предусматривает измерение модуля Юнга *E*. Схемы I и II на рис. 1,*б* применяются для возбуждения и регистрации собственных изгибных (I) и крутильных (II) колебаний, а по схеме III одновременно возбуждаются изгибные и крутильные колебания. Схема I обеспечивает измерение модуля Юнга *E*, схема II – модуля сдвига *G*, а по схеме III одновременно находятся *E* и *G* с последующим расчётом коэффициента Пуассона *v* и объёмного модуля упругости *K*.

Настоящая работа посвящена определению характеристик упругости неоднородных материалов многослойной структуры динамическим методом.

Рис. 1. Схемы закрепления, возбуждения и регистрации колебаний: 1 – образец; 2 – диафрагма; 3 – вязкая жидкость; 4 – генератор синусоидальных колебаний; 5 – возбудитель колебаний; 6 – приёмник; 7 – усилитель; 8 – индикатор колебаний; 9 – частотомер; 10 – проволоки подвеса образца (диаметром до 0,1 мм)

© Игнатьков Д.А., Электронная обработка материалов, 2011, 47(1), 53-62.

Постановка задачи

Получим в общем виде расчётные формулы для определения характеристик упругости неоднородных материалов многослойного или, иначе говоря, кусочно-неоднородного стержня, состоящего из пакета прочно сцеплённых слоев, в пределах каждого из которых упругие характеристики являются некоторыми детерминированными функциями координат. Такая постановка позволяет получить частные выражения для стержней с непрерывной упругой неоднородностью, кусочно-однородных, у которых упругие характеристики материалов постоянны в пределах каждого слоя, но различны для каждого из них, а также однородных.

Для материалов кусочно-неоднородного призматического (рис. 2,*a*) и цилиндрического (рис. 2,*б*) стержней, как единых целых, кусочно-непрерывные функции модуля Юнга $E(\xi)$, модуля сдвига $G(\xi)$, коэффициента Пуассона $v(\xi)$ и плотности материала $\rho(\xi)$ переменных $\xi = y, h, r$ представляем в виде [4]:

$$p(\xi) = p_1(\xi) + \sum_{k=1}^{n-1} \left[p_{k+1}(\xi) - p_k(\xi) \right] S_{-}(\xi - \xi_k),$$
(1)

где $p_k(\xi)$ соответственно обозначают функции модуля Юнга $E_k(\xi)$, модуля сдвига $G_k(\xi)$, коэффициента Пуассона $v_k(\xi)$ ($V_k \neq V_{k+1}$) и плотности $\rho_k(\xi)$ материала k-го слоя; k = 1, 2, ..., n – общее количество слоёв; $S_{-}(\xi - \xi_k) = \begin{cases} 1, \text{если } \xi \geq \xi_k \\ 0, \text{если } \xi < \xi_k \end{cases}$ – асимметричная единичная функция; $\xi_k = y_k, h_k, R_k$ – ко-

ординаты плоскостей сопряжения *k*-го и *k*+1-го слоёв.

Рис. 2. Сечения кусочно-неоднородных стержней с внешними размерами, нумерацией и координатами сопряжения пакета неоднородных материалов

Пусть в пределах k-го слоя прямоугольного и круглого поперечного сечений стержня длиной l модули упругости по координатам $\xi = y$, h, r есть некоторые неизвестные функции $E_k(\xi)$ и $G_k(\xi)$, вид которых требуется установить экспериментальным путем. Для этого последовательно удаляются или наращиваются слои материала, после чего каждый раз измеряются линейные размеры, резонансные частоты продольных $f_n(\xi)$, крутильных $f_k(\xi)$ и изгибных $f_u(\xi)$ колебаний, а также вес $Q(\xi)$ остающейся части или наращиваемого стержня. Далее экспериментальные данные аппроксимируются аналитическими зависимостями и по соответствующим формулам вычисляются значения характеристик упругости, а также устанавливаются функции их изменения по координатам сечения. В рамках технической теории продольных, крутильных и изгибных колебаний кусочно-неоднородных стержней получим требуемые расчётные формулы и поясним их применение численными примерами.

Определение модуля Юнга при возбуждении продольных колебаний

Уравнение для установившихся собственных продольных колебаний с круговой частотой $\omega(\xi)$ кусочно-неоднородного стержня записываем в виде [5]

$$u''(z) + \frac{\omega^2(\xi)m(\xi)}{A(\xi)}u(z) = 0,$$
(2)

где u(z) – амплитуда продольного перемещения поперечного сечения в направлении продольной оси z; $\xi = h,r$; $m(\xi) = Q(\xi)/gl$ – погонная масса; g – ускорение свободного падения тела; $A(\xi)$ – жесткость поперечного сечения при растяжении-сжатии; $u''(z) = d^2u(z)/dz^2$.

Общий интеграл уравнения (2) выражаем в форме

$$u(z) = B\cos\alpha z + D\sin\alpha z, \qquad (3)$$

ования; $\alpha = \sqrt{\frac{\omega^2(\xi)m(\xi)}{\omega^2(\xi)}}.$

где *B* и *D* – постоянные интегрирования; $\alpha = \sqrt{\frac{\omega^2(\zeta)m(\zeta)}{A(\zeta)}}$

Граничные условия закрепления стержня со свободными концами (рис. 1,*a*) при z = 0 $A(\xi)u'(0) = 0$ и $z = l A(\xi)u'(l) = 0$) означают, что D = 0; $B\sin a l = 0$. Поскольку константа $B \neq 0$, то из решения частотного уравнения $\sin a l = 0$ следуют значения собственных круговых частот:

$$\omega_{ni}(\xi) = \frac{\pi i}{l} \sqrt{\frac{A(\xi)}{m(\xi)}} \quad (i = 1, 2, 3, \dots).$$
(4)

Внося $\omega_{ni}(\xi)$ в соотношение (3) и учитывая, что D = 0, приходим к формуле для расчёта форм главных продольных колебаний:

$$u_i(z) = B_i \cos \frac{\pi i z}{l}.$$
(5)

Из равенства (4) следует зависимость, выражающая жесткость поперечного сечения через измеряемые собственные частоты $f_{ni}(\xi) = \omega_{ni}(\xi)/2\pi$,

$$A(\xi) = \frac{4l^2 m(\xi)}{i^2} f_{ni}^2(\xi) = \frac{4l^2 F(\xi)}{i^2} \rho(\xi) f_{ni}^2(\xi), \qquad (6)$$

где $F(\xi)$ – площадь сечения; F(h) = bh; $F(r) = \pi(r^2 - R_0^2)$; $\rho(\xi)$ – плотность неоднородного материала; $\rho(\xi) = \frac{Q(\xi)}{gV(\xi)} = \frac{Q(\xi)}{gF(\xi)l} = \frac{m(\xi)}{F(\xi)}$; V(h) = bhl и $V(r) = \pi(r^2 - R_0^2)l$ – соответственно объемы приз-

матического и цилиндрического стержней.

Учитывая представления кусочно-непрерывных функций E(h) и E(r) выражениями (1), формулы для вычисления жесткостей поперечных сечений при растяжении-сжатии в случае удаления или наращивания слоёв материала до высоты $\xi = h$ (рис. 2,*a*) или радиуса $\xi = r$ (рис. 2,*б*) записываем так:

$$A(h) = \int_{0}^{h} Ebdy = b \left[\int_{h_{k-1}}^{h} E_{k}(y)dy + \sum_{j=1}^{k-1} \int_{h_{j-1}}^{h_{j}} E_{j}(y)dy \right] (h_{0} = 0);$$
(7)

$$A(r) = 2\pi \int_{R_o}^{r} E\xi d\xi = 2\pi \left[\int_{R_{k-1}}^{r} E_k(\xi)\xi d\xi + \sum_{j=1}^{k-1} \int_{R_{j-1}}^{R_j} E_j(\xi)\xi d\xi \right].$$
(8)

Теперь равенства соотношений (6) и (7), (6) и (8) записываем в виде интегральных уравнений Вольтерра I рода

$$\int_{h_{k-1}}^{h} E_{k}(y)dy + \sum_{j=1}^{k-1} \int_{h_{j-1}}^{h_{j}} E_{j}(y)dy - \frac{4l^{2}h}{i^{2}}\rho(h)f_{ni}^{2}(h) = 0;$$
(9)

$$\int_{R_{k-1}}^{r} E_{k}(\xi)\xi d\xi + \sum_{j=1}^{k-1} \int_{R_{j-1}}^{R_{j}} E_{j}(\xi)\xi d\xi - \frac{2l^{2}(r^{2} - R_{0}^{2})}{i^{2}}\rho(r)f_{ni}^{2}(r) = 0.$$
 (10)

После дифференцирования по переменным *h*, *r* и преобразований получаем искомые формулы для расчета модуля Юнга материалов призматического и цилиндрического кусочно-неоднородного или кусочно-однородного стержней:

$$E_{k}(h) = \frac{4l^{2}}{i^{2}} f_{ni}(h) \left\{ \left[h\rho_{k}'(h) + \rho_{k}(h) \right] f_{ni}(h) + 2\rho_{k}(h) f_{ni}'(h) \right\} \right\}$$
(11)

$$E_{k}(r) = \frac{2l^{2}}{i^{2}r} f_{ni}(r) \left\{ \left[(r^{2} - R_{0}^{2})\rho_{k}'(r) + 2r\rho_{k}(r) \right] f_{ni}(r) + 2\rho_{k}(r)(r^{2} - R_{0}^{2})f_{ni}'(r) \right\}.$$
 (12)

Поскольку для стержня из однородного материала $\rho'_1(\xi) = 0$ и $f'_{ni}(\xi) = 0$, то из общих выражений (11) и (12) вытекает известная формула ($\rho = \rho_1; E = E_1$):

$$E = \frac{4l^2}{i^2} \rho f_{ni}^2.$$
 (13)

Из выражения (5) следует, что при собственных продольных колебаниях стержня по основной форме (i = 1) перемещение сечения при z = l/2 равно нулю. Поэтому стержень со свободными концами закрепляется посредине длины (рис. 1,*a*). Так как резонансные частоты для высших форм колебаний отличаются в 2, 3, и более раз, то по этим соотношениям они опознаются во всём частотном спектре.

Определение модуля сдвига при возбуждении крутильных колебаний

Уравнение для установившихся собственных крутильных колебаний с круговой частотой $\omega(r)$ кусочно-неоднородного цилиндрического стержня (рис. 1, δ , схемы II, III) рассматриваем в виде [5]

$$\theta''(z) + \frac{\omega^2(r)J_m(r)}{C(r)}\theta(z) = 0, \qquad (14)$$

где $\theta(z)$ – амплитуда угла закручивания сечения; $J_m(r)$ – погонный момент инерции массы; C(r) – жесткость поперечного сечения на кручение.

Учитывая запись кусочно-непрерывной функции плотности $\rho(r)$ в форме (1), функцию погонного момента инерции массы представляем следующим образом:

$$J_{m}(r) = 2\pi \left[\int_{R_{k-1}}^{r} \rho_{k}(\xi) \xi^{3} d\xi + \sum_{j=1}^{k-1} \int_{R_{j-1}}^{R_{j}} \rho_{j}(\xi) \xi^{3} d\xi \right]$$
(15)

Нетрудно заметить, что уравнение (14) адекватно выражению (2) при условии замены $\theta(z)$ на u(z), $J_{\rm m}(r)$ на $m(\xi)$ и C(r) на $A(\xi)$. Учитывая, что в случае свободного закрепления концов закручиваемого стержня крутящие моменты при z = 0 $C(r)\theta'(0) = 0$ и $z = l C(r)\theta'(l) = 0$, то, опуская выкладки, подобные вышеизложенным, сразу записываем формулы для нахождения собственных частот:

$$\omega_{\kappa i}(r) = \frac{\pi i}{l} \sqrt{\frac{C(r)}{J_m(r)}} \ (i = 1, 2, 3 ...)$$
(16)

и форм главных крутильных колебаний

$$\theta_i(z) = B_i \cos \frac{\pi i z}{l}.$$
(17)

Из соотношения (16) имеем формулу для расчета жесткости поперечного сечения при кручении через измеряемые резонансные частоты $f_{\kappa i}(r) = \omega_{\kappa i}(r)/2\pi$:

$$C(r) = \frac{4l^2}{i^2} J_m(r) f_{\kappa i}^2(r) \,. \tag{18}$$

С другой стороны, жёсткость составного круглого сечения (рис. 2,б) при кручении в случае удаления или наращивания слоёв материала до радиуса *r*

$$C(r) = 2\pi \int_{R_0}^r G\xi^3 d\xi = 2\pi \left[\int_{R_{k-1}}^r G_k(\xi)\xi^3 d\xi + \sum_{j=1}^{k-1} \int_{R_{j-1}}^{R_j} G_j(\xi)\xi^3 d\xi \right].$$
 (19)

Равенство соотношений (18) и (19) записываем в виде интегрального уравнения Вольтерра I рода:

$$\int_{R_{k-1}}^{r} G_{k}(\xi)\xi^{3}d\xi + \sum_{j=1}^{k-1} \int_{R_{j-1}}^{R_{j}} G_{j}(\xi)\xi^{3}d\xi - \frac{2l^{2}}{\pi i^{2}}J_{m}(r)f_{\kappa i}^{2}(r) = 0.$$
⁽²⁰⁾

После дифференцирования и преобразований получаем искомую формулу для расчета модуля сдвига:

$$G_{k}(r) = \frac{4l^{2}}{i^{2}} f_{\kappa i}(r) \left[\rho_{k}(r) f_{\kappa i}(r) + \frac{2}{r^{3}} I(r) f_{\kappa i}'(r) \right].$$
(21)

Здесь в интеграле

$$I(r) = \int_{R_{k-1}}^{r} \rho_k(\xi) \xi^3 d\xi + \sum_{j=1}^{k-1} \int_{R_{j-1}}^{R_j} \rho_j(\xi) \xi^3 d\xi$$
(22)

функции изменения плотности материалов ρ_i(ξ) кусочно-неоднородного или кусочнооднородного стержней устанавливаются экспериментальным путём, если они заранее неизвестны.

Очевидно, что для стержня из однородного материала $f'_{\kappa i}(r) = 0$. Для этого частного случая из выражения (21) имеем известную формулу ($\rho = \rho_1; G = G_1$)

$$G = \frac{4l^2}{i^2} \rho f_{\kappa i}^2$$
 (23)

Поскольку частоты резонансных колебаний для высших форм собственных крутильных колебаний отличаются в 2, 3, и более раз, то по этим соотношениям выполняется их опознание во всём частотном спектре.

Определение модуля Юнга при возбуждении изгибных колебаний

Рассматриваем уравнение для установившихся собственных изгибных колебаний по схемам I, III на рис. 1 кусочно-неоднородных стержней прямоугольного (рис. 2,*a*) и круглого сечений (рис. 2,*б*) в виде [5]

$$y''''(z) - \frac{\omega^2(\xi)m(\xi)}{B_x(\xi)}y(z) = 0,$$
(24)

где y(z) – амплитуда поперечного перемещения сечения; $\omega(\xi)$ – круговая частота; $m(\xi)$ – погонная масса; $Bx(\xi)$ – жесткость поперечного сечения на изгиб относительно оси х. Общий интеграл уравнения (24) записываем следующим образом:

$$y(z) = AS(kz) + BT(kz) + CU(kz) + DV(kz),$$
 (25)

где S(kz), T(kz), U(kz), V(kz) – функции Крылова; $k = \sqrt[4]{\frac{\omega^2(\overline{\xi})m(\xi)}{B_x(\xi)}}$; A, B, C, D – постоянные ин-

тегрирования.

Находим спектр собственных круговых частот и соответствующие им формы изгибных колебаний кусочно-неоднородного стержня со свободными концами: при $z = 0 B_x(\xi) y''(0) = 0$, $B_x(\xi) y'''(0) = 0$; при $z = l B_x(\xi) y''(l) = 0$, $B_x(\xi) y'''(l) = 0$. Эти граничные условия приводят выражение (25) к частотному уравнению

$$\cos k_i l \cdot \operatorname{ch} k_i l = 1, \tag{26}$$

корни которого при $i = 2 \alpha_2 = 4,730; i = 3 \alpha_3 = 7,853; i = 4 \alpha_4 = 10,996; i = p \alpha_p = 0,5\pi(2p-1)$, а также к уравнениям для соответствующих форм колебаний

$$y_{i}(z) = A_{i} \Big[(\operatorname{ch} k_{i}l - \cos k_{i}l) (\operatorname{sh} k_{i}z + \sin k_{i}z) - (\operatorname{sh} k_{i}l - \sin k_{i}l) (\operatorname{ch} k_{i}z + \cos k_{i}z) \Big].$$
(27)

Решение частотного уравнения (26) относительно собственных круговых частот $\omega_{ui}(\xi)$ даёт зависимость

$$\omega_{ui}(\xi) = \frac{\alpha_i^2}{l^2} \sqrt{\frac{B_x(\xi)}{m(\xi)}} \ (i = 1, 2, 3, ...),$$
(28)

из которой следует формула для определения жесткости сечения на изгиб:

$$B_{x}(\xi) = \frac{4\pi^{2}l^{4}}{\alpha_{i}^{4}}F(\xi)\rho(\xi)f_{ui}^{2}(\xi), \qquad (29)$$

где $f_{ui}(\xi) = \omega_{ui}(\xi) / 2\pi$ – частоты колебаний в единицу времени.

Сначала определим модули Юнга материалов кусочно-неоднородного стержня с площадью поперечного сечения F(h) = bh (рис. 2, δ). Жесткость поперечного сечения на изгиб относительно оси *x* выражаем соотношением

$$B_{x}(h) = B_{x}(h) - e^{2}(h)A(h).$$
(30)

Учитывая представление кусочно-переменной функции *E*(*h*) в виде (1), записываем формулы для расчёта упруго геометрических характеристик:

жесткость поперечного сечения на изгиб относительно оси x_1

$$B_{x_{1}}(h) = b \left[\int_{h_{k-1}}^{h} E_{k}(y) y^{2} dy + \sum_{j=1}^{k-1} \int_{h_{j-1}}^{h_{j}} E_{j}(y) y^{2} dy \right] (h_{0} = 0);$$
(31)

ордината центра тяжести поперечного сечения

$$e(h) = \frac{S_{x_1}(h)}{A(h)};$$
(32)

статический момент инерции поперечного сечения относительно оси x_1

$$S_{x_{1}}(h) = b \left[\int_{h_{k-1}}^{h} E_{k}(y) y \, dy + \sum_{j=1}^{k-1} \int_{h_{j-1}}^{h_{j}} E_{j}(y) y \, dy \right] (h_{0} = 0);$$
(33)

жёсткость поперечного сечения на растяжение

$$A(h) = b \left[\int_{h_{k-1}}^{h} E_k(y) dy + \sum_{j=1}^{k-1} \int_{h_{j-1}}^{h_j} E_j(y) dy \right] (h_0 = 0).$$
(34)

Теперь равенство соотношений (29) и (30) записываем в форме интегрального уравнения:

$$B_{x_{1}}(h) - \frac{S_{x_{1}}^{2}(h)}{A(h)} - \frac{4\pi^{2}l^{4}}{\alpha_{i}^{4}}bh\rho(h)f_{ui}^{2}(h) = 0.$$
(35)

После дифференцирования по переменной *h* и преобразований получаем искомую формулу для расчёта модуля Юнга материалов кусочно-неоднородного или кусочно-однородного призматиче-ского стержней:

$$E_{k}(h) = \frac{4\pi^{2}l^{4}}{\alpha_{i}^{4}[h - e_{k}(h)]^{2}} f_{ui}(h) \left\{ \left[h\rho_{k}'(h) + \rho_{k}(h) \right] f_{ui}(h) + 2h\rho_{k}(h) f_{ui}'(h) \right\}.$$
(36)

Использование формулы (36) осложняется тем, что из-за неизвестности значений модуля упругости невозможно найти упруго геометрические характеристики поперечного сечения. Затруднение преодолевается путём применения численного метода последовательных приближений. Его сущность заключается в следующем: по задаваемому ряду предполагаемых значений $E_m(h)$ подсчитываются величины $A_m(h)$, $e_m(h)$ и $B_{x_1m}(h)$ (m = 1, 2, ..., v), которые подставляются в выражение (35). Критерий сходимости заключается в выполнении равенства (35). Поясним этот метод примером.

Пусть на стержень с шириной *b* и высотой h_1 из однородного материала с известными значениями E_1 и ρ_1 нанесено однородное покрытие толщиной $t = h_2 - h_1$. Определим неизвестное значение модуля Юнга материала покрытия E_2 по измеряемым резонансным частотам $f_{u2}(h)$ основной формы (*i* = 2) изгибных колебаний и рассчитываемой плотности ρ_2 материала покрытия после каждого последовательного удаления слоев в пределах толщины *t* и взвешивания остающейся части двухслойного стержня (*n* = 2).

По формулам (30) – (34) упруго геометрические характеристики суть:

жёсткость поперечного сечения на растяжение-сжатие

$$A(h) = b \left[\int_{0}^{h_{1}} E_{1} dy + \int_{h_{1}}^{h} E_{2} dy \right] = b \left[E_{1} h_{1} + E_{2} (h - h_{1}) \right];$$
(37)

статический момент инерции поперечного сечения относительно оси X_1

$$S_{x_{1}}(h) = b \left[\int_{0}^{h_{1}} E_{1} y dy + \int_{h_{1}}^{h} E_{2} y dy \right] = \frac{b}{2} \left[E_{1} h_{1}^{2} + E_{2} (h^{2} - h_{1}^{2}) \right];$$
(38)

ордината центра тяжести поперечного сечения

$$e(h) = \frac{S_{x_1}(h)}{A(h)} = \frac{E_1 h_1^2 + E_2 (h^2 - h_1^2)}{2[E_1 h_1 + E_2 (h - h_1)]};$$
(39)

жесткость поперечного сечения на изгиб относительно оси X_1

$$B_{x_1}(h) = b \left[\int_{0}^{h_1} E_1 y^2 dy + \int_{h_1}^{h} E_2 y^2 dy \right] = \frac{b}{3} \left[E_1 h_1^3 + E_2 (h^3 - h_1^3) \right];$$
(40)

жесткость поперечного сечения на изгиб относительно оси х

$$B_{x}(h) = B_{x_{1}}(h) - e^{2}(h)A(h) = \frac{b}{3} \left\{ E_{1}h_{1}^{3} + E_{2}(h^{3} - h_{1}^{3}) - \frac{3}{4} \frac{\left[E_{1}h_{1}^{2} + E_{2}(h^{2} - h_{1}^{2})\right]^{2}}{E_{1}h_{1} + E_{2}(h - h_{1})} \right\}.$$
(41)

Итак, равенство выражений (29) и (41) даёт разрешающее уравнение:

$$E_{1}\frac{h_{1}^{3}}{3}\left\{1+\beta(\gamma^{3}-1)-\frac{3}{4}\frac{\left[1+\beta(\gamma^{2}-1)\right]^{2}}{1+\beta(\gamma-1)}\right\}-\frac{4\pi^{2}l^{4}}{\alpha_{2}^{4}}h\rho_{2}f_{u2}^{2}(h)=0,$$
(42)

где $\beta = E_2 / E_1$ и $\gamma = h / h_1$ – безразмерные коэффициенты.

да:

Пусть теперь на *s*-м этапе удаления слоев материала покрытия измерены линейные размеры, резонансная частота $f_{u2s}(h)$ и вес $Q_s(h)$ оставшейся части стержня. Тогда текущая плотность материала покрытия

$$\rho_{2s} = \frac{1}{\gamma_s - 1} \left[\frac{1}{bh_l l} \frac{Q_s(h)}{g} - \rho_1 \right].$$
(43)

Решая уравнение (42) относительно коэффициента β_s , получаем $E_{2s} = E_1 \cdot \beta_s$. Осреднение величин E_{2m} (m = 1, 2, ..., s, ..., v) даёт искомое значение модуля Юнга E_2 .

Если в частном случае коэффициенты $\gamma = 1$ и $\beta = 1$, то из уравнения (42) вытекает известная формула для расчёта модуля упругости однородного материала призматического или цилиндрического стержней ($\rho = \rho_1$; $E = E_1$):

$$E = \frac{48\pi^2 l^4}{\alpha_i^4 h_1^2} \rho f_{ui}^2 \quad (i = 2, 3, ...).$$
(44)

Рассмотрим теперь определение модуля Юнга E_k материалов кусочно-неоднородного цилиндрического стержня. Представляя кусочно-переменную функцию E(r) в форме (1), записываем формулу для расчёта жесткости поперечного сечения на изгиб относительно оси x (рис. 2, δ):

$$B_{x}(r) = \pi \int_{R_{0}}^{r} E(\xi)\xi^{3}d\xi = \pi \left[\int_{R_{k-1}}^{r} E_{k}(\xi)\xi^{3}d\xi + \sum_{j=1}^{k-1}\int_{R_{j-1}}^{R_{j}} E_{j}(\xi)\xi^{3}d\xi\right].$$
(45)

Равенство формул (29) и (45) выражаем в виде интегрального уравнения Вольтерра I ро-

$$\int_{R_{k-1}}^{r} E_{k}(\xi)\xi^{3}d\xi + \sum_{j=1}^{k-1} \int_{R_{j-1}}^{R_{j}} E_{j}(\xi)\xi^{3}d\xi - \frac{4\pi^{2}l^{4}}{\alpha_{i}^{4}}(r^{2} - R_{0}^{2})\rho(r)f_{ui}^{2}(r) = 0.$$
(46)

После дифференцирования по переменной *r* и преобразований получаем формулу для определения модуля Юнга материалов кусочно-неоднородного или кусочно-однородного цилиндрического стержней:

$$E_{k}(r) = \frac{4\pi^{2}l^{4}}{\alpha_{i}^{4}r^{3}} f_{ui}(r) \left\{ \left[(r^{2} - R_{0}^{2})\rho_{k}'(r) + 2r\rho_{k}(r) \right] f_{ui}(r) + 2(r^{2} - R_{0}^{2})\rho_{k}(r) f_{ui}'(r) \right\} \right\}$$
(47)

Поскольку для однородного цилиндрического стержня жёсткость поперечного сечения на изгиб

$$B_{x}(r) = \pi \int_{R_{0}}^{R_{1}} E_{1}\xi^{3}d\xi = E_{1}\pi \frac{R_{1}^{4} - R_{0}^{4}}{4}, \qquad (48)$$

то из равенства выражений (29) и (48) имеем известную формулу для вычисления модуля Юнга однородного материала ($\rho = \rho_1$; $E = E_1$):

$$E = \frac{16\pi^2 l^4}{\alpha_i^4 (R_1^2 + R_0^2)} \rho f_{ui}^2.$$
(49)

Из уравнения (27) для форм собственных изгибных колебаний следует, что на основной форме (i = 2) колебаний узловые точки находятся на расстоянии 0,224l и 0,776l от левого конца, которые показаны на рис. 1, δ . Поэтому крепление образцов осуществляется на тонких проволоках в этих точках. Частоты высших форм собственных изгибных колебаний отличаются от основной формы (i = 2) в 2,76, 5,41, 8,94, ... раз. Эти соотношения служат для опознания резонансных частот во всём частотном спектре, а также для разделения резонансных частот изгибных и крутильных колебаний при совместном определении модулей упругости *E* и *G* по схеме III на рис. 1, δ .

Коэффициент Пуассона v и модуль объёмной упругости К вычисляются по формулам:

$$v = \frac{E}{2G} - 1; \tag{50}$$

$$K = \frac{EG}{3(3G - E)} = \frac{E}{3(1 - 2\nu)}.$$
(51)

Расчет характеристик упругости и анализ результатов

В качестве примера вычислим характеристики упругости материала плазменного покрытия из иттрия толщиной t = 3 мм, напыленного на полый цилиндрический стержень из легированной стали с составом (%): C – 0,14; Si – 0,12; Mn – 0,52; Cr – 13,6; Ni – 0,48. Размеры стержня: длина l = 200 мм; радиусы $R_0 = 8$ мм; $R_1 = 10$ мм; $R_2 = 13$ мм. После каждого удаления слоя измерялись линейные размеры, вес стержня и резонансные частоты основных форм собственных продольных (i = 1), крутильных (i = 1) и изгибных (i = 2) колебаний. Результаты испытаний представлены в табл. 1, которые аппроксимировались аналитическими зависимостями в математической системе Mathcad 14 по методу наименыших квадратов с применением линейной и полиномиальной регрессий полиномами первой и пятой степеней.

Таблица 1. Экспериментальные данные

j	<i>г</i> , м	$Q(r), \mathbf{H}$	$f_{n1}(r)$, Гц	$f_{_{\kappa 1}}(r)$, Гц	$f_{u2}(r)$, Гц
0	0,01000	1,736	13119	8145	2990
1	0,01050	1,998	12636	7282	2872
2	0,01089	2,210	12417	7001	2818
3	0,01105	2,304	12276	6897	2799
4	0,01130	2,443	12099	6663	2790
5	0,01165	2,653	11916	6459	2785
6	0,01215	2,954	11701	6297	2785
7	0,01240	3,117	11556	6241	2795
8	0,01270	3,309	11455	6170	2807
9	0,01300	3,505	11326	6059	2823

Результаты расчетов характеристик упругости по формулам (12), (21), (47), (50) и (51) сведены в табл. 2, где переменная толщина $a = r - R_1$.

Изменение веса по радиусу r ($R_1 \le r \le R_2$) или по толщине a покрытия описывается линейной регрессионной зависимостью

$$Q(r) = 1,696 + 592,737(r - R_1), \text{H}; Q'(r) = 592,737 \text{ H/M}.$$

Из неё следует, что плотность легированной стали $\rho_1 = 7,82 \cdot 10^3$ кг/м³, а плотность напыленного иттрия не изменяется по радиусу стержня и составляет:

$$\rho_2 = \frac{Q_{\Sigma}}{\pi (R_2^2 - R_1^2) l_g} - \frac{R_2^2 - R_0^2}{R_2^2 - R_1^2} \rho_1 = 4, 1 \cdot 10^3 \text{ KG/M}^3,$$

где $Q_{\Sigma} = 3,505 \text{ H} - \text{суммарный вес стержня до испытаний. Это обстоятельство указывает на то, что мо$ дули упругости напыленного иттрия – постоянные величины. Характеристики упругости легированной $стали <math>E_1 = 215,3 \Gamma \Pi a$, $G_1 = 82,7 \Gamma \Pi a$; $v_1 = 0,3$; $K_1 = 180,9 \Gamma \Pi a$ соответствуют данным справочной литературы.

т	1	2	3	4	5	6	7				
<i>r</i> · 10 ³ , м	10,0	10,5	11,0	11,5	12,0	12,5	13,0				
$a \cdot 10^3$, м	0	0,5	1,0	1,5	2,0	2,5	3,0				
при возбуждении собственных продольных колебаний											
<i>Q</i> , H	1,696	1,992	2,289	2,585	2,881	3,178	3,474				
$Q', { m H/M}$	592,737	592,737	592,737	592,737	592,737	592,737	592,737				
$ ho \cdot 10^{-3} \mathrm{kg}/\mathrm{m}^3$	7,821	7,015	6,472	6,093	5,811	5,589	5,418				
$ ho' \cdot 10^{-6}, \kappa \Gamma / m^4$	-1,955	-1,312	-0,895	-0,643	-0,497	-0,395	-0,279				
$f_{n1} \cdot 10^{-4}$, Гц	1,311	1,266	1,230	1,201	1,175	1,153	1,133				
$f'_{n1} \cdot 10^{-6}, \Gamma$ ц/м	-1,013	-0,799	-0,649	-0,546	-0,475	-0,423	-0,375				
<i>E</i> ₂ , ГПа	58,5	55,8	57,8	58,6	57,2	55,7	58,4				
$ ρ_1 = 7,82 \cdot 10^3 $ κг/м ³ ; $ρ_2 = 4,1 \cdot 10^3 $ κг/м ³ ; $E_1 = 215,2 $ ΓΠa; $E_2 = 57,4 \pm 1,2 $ ΓΠa; $Δ_E = 2,1\%$											
при возбуждении собственных крутильных колебаний											
$I \cdot 10^5$, кг \cdot м ²	1,154	1,576	2,062	2,619	3,254	3,973	4,784				
$f_{_{\kappa 1}} \cdot 10^{-3}$, Гц	8,130	7,350	6,873	6,573	6,363	6,199	6,075				
$f'_{\kappa 1} \cdot 10^{-6}, \Gamma$ ц/м	-1,964	-1,208	-0,743	-0,488	-0,365	-0,293	-0,193				
<i>G</i> ₂ , ГПа	23,8	22,7	23,6	24,4	23,7	22,5	23,8				
$G_1 = 82,7 \ \Gamma\Pi a; v_1 = 0,3; K_1 = 180,9 \ \Gamma\Pi a; G_2 = 23,5 \pm 0,6 \ \Gamma\Pi a; v_2 = 0,22; \Delta_G = 2,6\%$											
при возбуждении собственных изгибных колебаний											
$f_{u2} \cdot 10^{-4}$, Гц	2,990	2,870	2,807	2,783	2,784	2,798	2,823				
$f'_{u2} \cdot 10^{-6}, \Gamma$ ц/м	-3,130	-1,760	-0,813	-0,198	0,176	0,402	0,571				
<i>E</i> ₂ , ГПа	57,7	56,4	57,3	58,1	58,0	57,4	56,8				
$E_1 = 215,3 \ \Gamma\Pi a; v_1 = 0,3; E_2 = 57,4 \pm 0,6 \ \Gamma\Pi a; v_2 = 0,22; K_2 = 34.3 \ \Gamma\Pi a; \Delta_E = 1,1\%$											

Таблица 2. Расчетные значения характеристик упругости напылённого иттрия

Расчётные значения модулей упругости материала плазменного покрытия из иттрия распределяются по толщине с небольшими отклонениями Δ_E и Δ_G порядка 1,1 – 2,6% от средних величин $\overline{E}_2 = 57,4$ ГПа и $\overline{G}_2 = 23,5$ ГПа (табл. 2), подсчитанные по формулам:

$$\overline{E}_{2} = \frac{1}{v} \sum_{m=1}^{v} E_{2m}; \ s_{E}^{2} = \frac{1}{v-1} \sum_{m=1}^{v} \left(E_{2m} - \overline{E}_{2} \right)^{2}; \ \Delta_{E} = \frac{s_{E}}{\overline{E}_{2}} 100 = \frac{1}{v} \sum_{m=1}^{v} \left(E_{2m} - \overline{E}_{2} \right)^{2}$$

$$\overline{G}_{2} = \frac{1}{v} \sum_{m=1}^{v} G_{2m}; \quad s_{G}^{2} = \frac{1}{v-1} \sum_{m=1}^{v} \left(G_{2m} - \overline{G}_{2} \right)^{2}; \quad \Delta_{G} = \frac{s_{G}}{\overline{G}_{2}} 100,$$

где v = 7; S_E и S_G – среднеквадратичные отклонения.

Наличие указанных отклонений обусловлено следующим. По своей сущности, в нелинейных формулах (11), (12), (21), (36) и (47) присутствуют два основных слагаемых, в одном из которых аппроксимированные функции частот в квадрате, а другое представляет собой произведение этих функций на их отрицательные производные. Следовательно, из-за неточностей измерений и аппроксимации экспериментальных данных возникает погрешность при вычислении истинной разности слагаемых, которая и обусловливает неизбежное появление указанных отклонений. Поэтому при испытаниях должны обеспечиваться точность измерений веса порядка 0,1%, а резонансных частот не выше 0,05%. Расчёты следует вести с точностью до четырёх знаков с предъявлением жестких требований к подбору аппроксимирующих зависимостей, применяя, например, обобщённую регрессию. Для напыленного иттрия принимаем значение модуля Юнга $E_2 = 57,4$ ГПа, а модуля сдвига – $G_2 = 23,5$ ГПа. Тогда по формулам (50) и (51) получаем величину коэффициента Пуассона $v_2 = 0,22$, а модуля объемной упругости $K_2 = 34,3$ ГПа.

Значения характеристик упругости напыленного иттрия меньше, чем у металлического иттрия, полученного металлургическим путем. По данным из справочника [6] для металлического иттрия $\rho = 4,55 \cdot 10^3 \text{ кг/m}^3$ и E = 63,3 ГПа, а по сведениям из источника [7] с учётом исправлений опечаток $\rho = 4,45 \cdot 10^3 \text{ кг/m}^3$, E = 66 ГПа, G = 26,4 ГПа, v = 0,25. Различие значений характеристик упругости напыленного и металлического иттрия очевидно вызвано наличием в покрытии пористости. Учитывая связь модуля Юнга с пористостью [8], найдём её величину по формуле:

$$\Pi_E = \frac{(1-\lambda)(7-5\nu_2)}{15(1-\nu_2)-2(1-\lambda)(4-5\nu_2)},$$
(52)

где $\lambda = E_2 / E$. Внося в соотношение (52) усреднённые данные литературы и полученные значения $\lambda = E_2 / \overline{E} = 0,866$; $v_2 = 0,22$, получаем величину пористости напыленного иттрия $\prod_E = 7,2\%$, которая несколько меньше обычной оценки, учитывающей только плотности сравниваемых материалов:

$$\Pi_{\rho} = \left(1 - \frac{\rho_2}{\overline{\rho}}\right) \cdot 100 = 8,9\%$$

Таким образом, пористость плазменного иттриевого покрытия является основной причиной, которая приводит к снижению характеристик упругости напыленного иттрия.

ЛИТЕРАТУРА

1. Игнатьков Д.А. Остаточные напряжения в неоднородных деталях. Кишинев: Штиинца. 1992. 302 с.

2. Игнатьков Д.А. Методы определения и регулирование остаточных напряжений в телах неоднородной структуры. Автореферат дис. д-ра техн. наук: 01.02.04. Екатеринбург, 2005. 23 с.

3. Металлы. Динамический метод определения характеристик упругости: ГОСТ 25156-82. Введ. 02.03.82. М.: Государственный комитет СССР по стандартам: Издательство стандартов, 1982. 21 с.

4. Подстригач Я.С., Ломакин В.А., Коляно Ю.М. Термоупругость тел неоднородной структуры. М.: Наука, 1984. 368 с.

5. Справочник по строительной механике корабля: в 3 т. редкол.: О. Палий (науч. ред.) и др. Л.: Судостроение, 1982. Динамика и устойчивость корпусных конструкций. Г. Бойцов и др., 1982. **3**, 318 с.

6. Справочник. Свойства элементов: в 2 ч. редкол.: Г. В. Самсонов (ред.). М.: Металлургия, 1976. Физические свойства. Т. А. Андреева и др. 1976. ч. 1, 600 с.

7. *Химическая* энциклопедия [Электронный курс]. Режим доступа: http://www.xumuk.ru/tncyklopedia/1767.html. Дата доступа: 13.04.2010.

8. Hashin Z. Relations between Young's modulus and temperature. J. Appl. Mech. 1962, 29(1), 143–147.

Поступила 08.06.10

Summary

Settlement formulas and examples of definition of characteristics of elasticity of heterogeneous multilayered materials are stated by a dynamic resonant method.