ВЕРОЯТНОСТИ ГЕТЕРОГЕННОЙ РЕКОМБИНАЦИИ АТОМОВ КИСЛОРОДА В ПЛАЗМЕ O₂-Ar

ГОУВПО Ивановский государственный химико-технологический университет, пр. Ф.Энгельса, 7, г. Иваново, 153000, Россия, <u>kholodkova@isuct.ru</u>

Низкотемпературная кислородсодержащая плазма находит широкое применение как в технологии травления, так и для модификации поверхности различных материалов. Значительный интерес с точки зрения технологии представляет использование смесей химически активных газов с аргоном. Выбор и оценка параметров работы плазмохимических реакторов требуют учета многих факторов, важное место среди которых занимают кинетические характеристики процессов гибели активных частиц на различных поверхностях. Кварцевое и молибденовое стекла широко применяются в качестве материалов конструкции плазмохимических реакторов. В то же время, несмотря на большое число работ, посвященных исследованию плазмы смесей $O_2 - Ar$ [1-3], в литературе отсутствуют систематические данные о вероятностях гетерогенной рекомбинации атомов кислорода на поверхности данных материалов.

Методика эксперимента. Экспериментальные измерения проводились на установке, схема которой представлена на рис. 1. Цилиндрический реактор внутренним диаметром $1,5\,10^{-2}$ м изготовлен из электровакуумного молибденового стекла марки C-52. Максимальное расстояние между анодом и катодом составляло 1,5 м. Длина положительного столба (ПС) тлеющего разряда постоянного тока могла меняться при перемещении анода вдоль разрядной трубки. Атомы, образующиеся в разряде, выносились потоком газа через кварцевую трубку (диаметр $0,96^{-1}0^{-2}$ м, длина 0,3 м) и регистрировались методом ЭПР с помощью радиоспектрометра РЭ 1301.

Диапазон давлений газовой смеси составлял 50–300 Па, ток разряда изменяли в пределах 10–80 мА. Плазмообразующий газ готовился путем смешения известных объемов аргона и кислорода, точность приготовления контролировалась масс-спектрометрически. Значения температур газа на оси положительного столба T_0 и стенке разрядной трубки $T_{\rm cr}$ измерялись с помощью медьконстантановых термопар [4].

При проведении экспериментов была использована струевая методика, позволяющая получить сведения о процессах гибели атомов как в зоне плазмы, так и за ее пределами, в области послесвечения.

Кинетические зависимости для атомов кислорода получали при изменении времени контакта с исследуемой поверхностью (кварц, электровакуумное стекло): в случае послесвечения – путем изменения скорости потока газа при фиксированных параметрах разряда; в случае зоны плазмы – за счет изменения длины разрядной зоны при постоянной скорости потока, то есть определяя распределение относительной концентрации атомов. Линеаризация этих зависимостей в полулогарифмическом масштабе позволяет говорить о протекании реакции гетерогенной рекомбинации атомов на поверхности кварцевого (послесвечение) и электровакуумного (плазма) стекла по первому кинетическому порядку, что не противоречит литературным данным [5, 6].

Решение уравнения непрерывности для плотности потока атомов дает следующее выражение для концентрации атомов *n* в резонаторе ЭПР-спектрометра:

$$n = [W\tau(1 - e^{-\alpha_1 z}) + n_0 e^{-\alpha_1 z}]e^{-\alpha_2 L}.$$
(1)

Здесь W – средняя по сечению трубки скорость диссоциации; τ – время гетерогенной рекомбинации атомов кислорода в зоне ПС; z – координата, отсчитываемая от места входа в трубку резонатора к аноду; L – расстояние между ПС и резонатором (рис. 1); n_0 – концентрация атомов при z = 0.

[©] Бровикова И.Н., Холодкова Н.В., Холодков И.В., Кольцов Р.М., Электронная обработка материалов, 2008, № 4, С. 51–54.

Влияние давления плазмообразующего газа на вероятность гетерогенной рекомбинации атомов (ток разряда 50 мА)

Плазма (молибденовое стекло)								
Р, Па		50	75	100	150	200	250	300
20%0 ₂ + 80% Ar	Т _{ст} , К	322	327	331	334	339	345	352
	τ, 10 ⁻² c	2,3	0,8	1,2	2,7	2,1	2,0	2,2
	γ , 10 ⁻³	1,00±0,11	2,73±0,30	1,95±0,21	0,85±0,09	1,08±0,12	1,12±0,12	1,00±0,11
80%02+20% Ar	Т _{ст} , К	327	331	332	346	351	362	369
	τ, 10 ⁻² c	1,5	2,2	3,9	3,1	3,7	6,4	5,6
	γ, 10 ⁻³	1,56±0,42	1,01±0,27	0,59±0,09	0,72±0,11	0,63±0,17	0,34±0,05	0,38±0,06
$100\%O_2$	Т _{ст} , К	327	332	336	344	357	359	362
	τ, 10 ⁻² c	1,3	1,3	2,7	4,8	3,4	4,6	6,9
	$\gamma, 10^{-3}$	1,04±0,62	1,75±0,28	0,87±0,14	0,48±0,14	0,65±0,04	0,48±0,07	0,32±0,05
Послесвечение (кварц)								
Р, Па		50	75	100	150	200	250	300
20%02+80% Ar	Т _{ст} , К	325	326	327	335	338	346	348
	τ, 10 ⁻¹ c	7,4	6,6	4,9	2,2	2,0	1,4	1,2
	γ , 10 ⁻⁵	2,07±0,31	2,31±0,22	3,09±0,46	6,92±0,76	7,85±1,84	10,83±1,62	12,57±1,89
80%02+20% Ar	Т _{ст} , К	333	334	342	348	351	363	371
	τ, 10 ⁻¹ c	17,3	5,3	3,2	1,7	1,5	1,4	0,8
	γ , 10 ⁻⁵	0,88±0,13	2,93±0,27	5,21±2,04	9,22±1,01	10,08±0,48	11,03±1,32	20,28±2,88
$100\%O_2$	Т _{ст} , К	329	335	340	344	358	361	352
	τ, 10 ⁻¹ c	6,3	4,9	2,9	1,8	1,5	0,7	0,6
	γ , 10 ⁻⁵	2,54±0,51	3,18±0,36	5,32±0,21	8,81±0,81	10,70±0,80	23,61±3,54	24,80±3,62

Рис. 1. Схема экспериментальной установки. 1 – реактор; 2 – резонатор радиоспектрометра ЭПР; 3 – расходомер; 4 – термопара

Величины α₁ и α₂ определялись из соотношения

$$\alpha = 0, 5 \left(\frac{V}{D}\right) \left[\sqrt{1 + \frac{4D}{V^2 \tau}} - 1\right],\tag{2}$$

где V – среднемассовая скорость; D – коэффициент диффузии атомов. Для α_1 и α_2 параметры V, D и τ брались соответственно для зоны ПС и послесвечения (в условиях наших экспериментов объемными процессами гибели атомов можно пренебречь). Предварительные измерения показали, что характерное время радиальной диффузии по крайней мере на порядок величины меньше τ , а изменение среднемассовой скорости, связанное с диссоциацией, не превышает 5%. Вероятность гетерогенной гибели атомов определялась как

$\gamma = (2R/V_T)\tau,$

где *R* – радиус трубки, *V*_{*T*} – тепловая скорость атомов вблизи стенки.

Результаты измерений и их обсуждение. Результаты измерений вероятностей гибели атомов кислорода $O({}^{3}P)$ в зоне плазмы и в области потокового послесвечения представлены на рис. 2–3 и в таблице. Во всех случаях измерения проводились в условиях естественного теплообмена с окружающей средой.

Рис. 2. Зависимость вероятности гетерогенной гибели атомов кислорода в $\Pi C(1)$ и послесвечении (2) плазмы O_2 -Ar от состава смеси O_2 -Ar ($P = 200 \Pi a$, $I_p = 50 \text{ мA}$)

Добавка аргона не дает заметного изменения вероятностей гетерогенной рекомбинации атомов кислорода в области плазмы, наблюдается лишь незначительное увеличение γ при введении аргона в плазмообразующий газ (см. рис. 2). В пределах погрешности эксперимента полученное значение γ составляет порядка 1·10⁻³ для всех составов O₂-Ar(0-90%). Это значение γ меньше вероятностей гетерогенной рекомбинации атомов O(³P) в плазме чистого кислорода, измеренных в работе [6], но хорошо согласуется с данными работ [1, 2, 7].

В области послесвечения вероятность гетерогенной рекомбинации незначительно возрастает с ростом содержания кислорода в смеси (см. рис. 2), а также при увеличении давления плазмообразующей смеси (см. таблицу), что согласуется с результатами работы [5] для плазмы чистого кислорода.

Определенного влияния тока разряда на значение у в области ПС не выявлено (см. рис. 3). В области послесвечения наблюдается тенденция к увеличению у при снижении тока разряда менее 30 мА вне зависимости от состава смеси.

Заключение. В результате проведенных экспериментальных исследований получены данные о вероятности гетерогенной гибели атомов кислорода в положительном столбе тлеющего разряда постоянного тока на поверхности электровакуумного стекла C-52 и в области потокового послесвечения на поверхности кварцевого стекла в смеси O_2 -Ar разного состава. Показано, что в области послесвечения плазмы смеси O_2 -Ar (10-90%) наблюдается монотонное уменьшение величины вероятности гетерогенной рекомбинации атомов кислорода, в то время как в области ПС при тех же содержаниях атомов аргона в смеси значение γ не изменяется.

ЛИТЕРАТУРА

1. *Smirnov S.A., Rybkin V.V., Ivanov A.N., Titov V.A.* The Simulation of the Processes of Formation and Decay of Neatral Particles in DC Discharge Plasma in an Argon-Oxygen Mixture // High Temperature. 2007. V. 45. N 3. P. 291–297.

2. *Рыбкин В.В., Смирнов С.А., Иванов А.Н.* Кинетическая модель образования и гибели нейтральных частиц в плазме смеси O₂–Ar // IV Междунар. симпозиум по теорет. и прикл. плазмохимии: Сб. тр., Иваново, 2005. Т. 1. С. 247–250.

3. Morscheidt W., Hassouni K., Bauduin N., Arefi-Khonsari F. and Amouroux J. On the Use of Global Kinetics Models for the Investigation of Energy Deposition and Chemistry in RF Argon–Oxygen Plasmas Working in the Torr Regime // Plasma Chemistry and Plasma Processing. March 2003 Vol. 23, No. 1, P. 117–140. 4. Максимов А.И., Сергиенко А.Ф., Словецкий Д.И. Измерение температуры газа в тлеющем разряде термопарным методом // Физика плазмы. 1978. Т. 4. Вып. 2. С. 347.

5. Бровикова И.Н., Рыбкин В.В. Температурная зависимость вероятности гетерогенной рекомбинации атомов O(³P) на поверхности кварцевого стекла // Химия высоких энергий. 1993. Т. 27. № 4. С. 89–92. 6. Бровикова И.Н., Рыбкин В.В., Шукуров А.Л. Кинетические характеристики диссоциации молекул кислорода в положительном столбе разряда постоянного тока // Химия высоких энергий. 1997. Т. 31. № 2. С. 146.

7. Gordiets B., Ferreira C. M., Nahorny J., Pagnon D., Touzeau M. and Vialle M. Surface kinetics of N and O atoms in N_2 – O_2 discharges // J. Phys. D: Appl. Phys. 1996. No 29. P. 1021–1031.

Поступила 21.01.08

Summary

The heterogenic recombination probabilities of oxygen atoms have been measured with the ESR method for conditions of positive column and a flowing afterglow of O_2 -Ar (0-90%) mixtures at pressure range of 50–300 Pa and discharge current range of 10–80 mA. In the case the recombination surface was molybdenum glass whereas in the second was silica.