ИЗ ОПЫТА РАБОТЫ

А.М. Гашимов, К.З. Нуриев, Салман Манучар А., К.Б. Гурбанов, З.К. Нурубейли

КОЭФФИЦИЕНТЫ ОТНОСИТЕЛЬНЫХ ЧУВСТВИТЕЛЬНОСТЕЙ ДЛЯ БЕЗЭТАЛОННОГО АНАЛИЗА ТВЕРДЫХ ВЕЩЕСТВ МЕТОДОМ МАСС-СПЕКТРОМЕТРИИ ВТОРИЧНЫХ ИОНОВ

Институт физики НАН Азербайджана, пр. Г. Джавида, 33, АЗ-1143, г. Баку, Азербайджан, <u>arif@physics.ab.az</u>

Введение

Масс-спектрометрическое исследование продуктов вторичной ионной эмиссии (МСВИ) является прямым методом анализа элементного и изотопного составов проводящих и непроводящих твердых тел. Как и другие методы масс-спектрометрического анализа, МСВИ также имеет определенные аналитические характеристики, заключающиеся в возможности установления однозначной связи между концентрацией анализируемого элемента и регистрируемым исходным сигналом.

Несмотря на то что систематические исследования вторичной ионной эмиссии (ВИЭ) начались с работ Беске [1], однако до настоящего времени одной из основных проблем этого метода является некоторое несоответствие измеренного массового спектра вторичных ионов (ВИ) химическому составу пробы. Причина такого несоответствия – неодинаковый выход ионов различных элементов, связанный с особенностями ионизации атомов и дискриминации по массе в системах разделения и их регистрации. Для учета данного несоответствия обычно используют коэффициенты относительной чувствительности (КОЧ) определяемого элемента по отношению к внутреннему стандарту [2]:

$$\frac{I_x}{I_{_{GH,CM}}} = K_{GH,CM}^X \cdot \frac{N_x}{N_{_{GH,CM}}},$$
(1)

где $I_x, I_{en.cm}$ – измеренные аналитические сигналы определяемого элемента и внутреннего стандарта; $N_x, Ne \, h.cm.$ – концентрации соответствующих элементов; $K^x_{eh.cm}$ – коэффициент относительной чувствительности. Величину $K^x_{eh.cm}$ часто представляют в виде

$$K^{X}_{BH.CM} = X^{X}_{BH.CM} \cdot F_{npu\delta},$$

где $X_{gh.cm}^{x}$ – коэффициент относительного выхода вторичных ионов, характеризующий дискриминации атомов различных элементов при эмиссии ионов; $F_{npu\delta}$ – приборный фактор, связанный с разделением ионов по массам и их регистрацией.

Многочисленные работы (см., например, [3–5]) показывают, что значение КОЧ можно определить экспериментально, путем введения в анализируемую пробу внутреннего стандарта с известной концентрацией. Это позволит снизить систематическую погрешность в среднем до 20%. Однако изготовление и аттестация стандартных образцов с учетом жестких требований по гомогенности, необходимой для МСВИ, крайне затруднительны, поэтому продолжает оставаться актуальным определение КОЧ с помощью теоретических, эмпирических и полуэмпирических выражений. В настоящее время предложено большое количество эмпирических выражений, каждое основано на определенном механизме образования ВИ [6–9]. Для использования того или иного выражения при расчете

[©] Гашимов А.М., Нуриев К.З., Салман Манучар А., Гурбанов К.Б., Нурубейли З.К., Электронная обработка материалов, 2008, № 2, С. 98–104.

КОЧ необходимо знание физических процессов, лежащих в основе образования ВИ. Поэтому в настоящее время одной из важных задач масс–спектрометрии твердых веществ является решение проблемы безэталонного анализа. В этой связи знание значений КОЧ заблаговременно для элементов, входящих в состав исследуемого образца, на наш взгляд, представляет определенный интерес.

В настоящей работе сделана попытка создания на основе экспериментальных результатов каталога КОЧ для широкого круга элементов. Наличие такого каталога для некоторого диапазона энергий и токов первичных ионов, как нам кажется, даст возможность уменьшить систематическую погрешность при анализе твердых тел методом МСВИ.

Условия эксперимента

Эксперименты проводились на установке, схема которой представлена на рис. 1. Первичные ионы с энергией 1,5–5,5 кэВ и плотностью потока ионов 0,1–0,5 мА/см² вытягивались из плазмы (1) тлеющего разряда в аргоне (кислороде, ксеноне) через отверстие в катоде (2), ускорялись, фокусировались с помощью ионно-оптической системы (3), расположенной за катодом, и направлялись на образец (4) под углом 45° относительно нормали к поверхности образца. Вторичные ионы собирались с помощью вытягивающей сетки (5), на которую подавалось импульсное напряжение относительно мишени длительностью 10⁻⁷с. Такой режим работы экспериментальной установки позволял получать на выходе из источника пакет первичных ионов с расходимостью 1–2°. Анализатором ионов служил времяпролетный масс-анализатор с аксиально–симметричным электрическим полем (6), позволяющим фокусировать ионы по энергиям и углу расходимости. Необходимость использования данного анализатора обусловлена тем, что вторичные ионы, эмитируемые с поверхности образца, обладают сравнительно большим (более чем 5%) разбросом по начальным энергиям.

Рис. 1. Экспериментальная установка

Отметим, что ионной пушкой может служить практически любой тип ионных источников. Главное требование, которое предъявляется к ионной пушке, – большая величина ионного тока, и, поскольку вторично-эмиссионные масс-спектры мало зависят от разброса энергии бомбардирующих ионов, вполне допустим их разброс в пределах 10–20%.

Для ускоренного установления или замены образцов использован высоковакуумный быстродействующий шлюз (7) [10], позволяющий устанавливать или перемещать образцы, не нарушая высокий вакуум (10⁻⁴ Па) в источнике ионов. Благодаря экспериментальной установке также осуществлялся подогрев образцов до температуры 500–600°С с целью очистки их от адсорбированных газов.

Исследуемый образец устанавливался на металлической подложке (8), которая через вакуумный шлюз вводилась в область ионизации. Мишень нагревалась с помощью электрического нагревателя.

При подготовке мишеней особое внимание уделялось их чистоте. Это обусловлено тем, что частицы с энергией в несколько килоэлектровольт при соударении с твердым телом полностью теряют свою энергию на длине пробега в веществе в несколько нанометров. Именно на такой глубине происходит образование ВИ, и присутствие на поверхности посторонних молекул может существенным образом исказить масс-спектр исследуемого вещества. Загрязнение мишени происходит и в самом масс-спектрометре, если вакуум в области ионизации недостаточно высок (10⁻²–10⁻³ Па). Экспе-

рименты показали, что нагрев мишени до температуры 500-600°С в течение 1-2 часов приводит к полной ее очистке от адсорбированных молекул.

Результаты эксперимента

На рис. 2 приведены типичные осциллограммы масс-спектров некоторых металлов. Не очень высокая (не более 30%) воспроизводимость результатов обусловила необходимость многократных бомбардировок. В табл. 1 приведены значения КОЧ, рассчитанные на основании масс-спектров наиболее распространенных изотопов 27 чистых металлов. Элементы в таблице расположены в порядке убывания КОЧ. В качестве внешнего эталона выбрано ⁵⁶Fe⁺. Бомбардирующими ионами служили Ar⁺, O⁺ и Xe⁺.

Рис. 2. Осциллограммы масс-спектров Fe, Ti и Al

В таблице приведены также потенциалы первой и второй ионизаций исследуемых элементов. Приведенные в таблице КОЧ металлов позволяют сделать ряд выводов, представляющих интерес с практической точки зрения и важных для понимания некоторых особенностей механизма образования ВИ на поверхности металлов. Прежде всего следует отметить, что эмиссия вторичных ионов – структурно-чувствительное явление, так как она зависит от строения и свойств материала мишени. Это приводит к тому, что в зависимости от природы мишени интенсивность ионной эмиссии (КОЧ) для разных элементов может различаться более чем на два порядка.

Как видно из табл. 1, различие в значениях КОЧ для разных металлов достигает более двух порядков при бомбардировке ионами Ar^+ и около трех порядков для O^+ . Это, естественно, и обусловливает различную чувствительность анализа (от 10^{-6} до $5 \cdot 10^{-5}$ %).

На основе экспериментальных данных были построены кривые зависимостей КОЧ МСВИ от энергии атомизации и потенциала ионизации элементов (рис. 3). Как видно из рисунка, зависимость относительного выхода ионов X_{Fe}^+ от первого потенциала ионизации носит квадратичный характер. Зависимость X_{Fe}^+ от энергии атомизации (4) свидетельствует о влиянии процессов атомизации (ско-

рости и энергии атомизации) на относительный выход ВИ. Наибольший X_i^+ наблюдается для элементов с наименьшим потенциалом ионизации, но с большей энергией атомизации.

				Потенциальн.	Энергия	
Элемент		КОЧ		I ионизац.,	атомизации,	
		-		эВ	эВ	
	Ar^{+}	O^+	Xe	ϕ_{I}	ϕ_{a}	
Mg	11,4	86	131	7,644	1,15	
Al	9,6	447	129	5,89	7,81	
Nd	4,13	1,11	83	6,32	9,37	
Y	2,87	5,12	72	6,58	4,43	
V	2,75	200	122	6,74	3,36	
Ga	2,28	13,2	83	6,00	2,08	
Be	2,19	15,5	72	9,32	-	
Mn	2,15	13,5	69	7,34	3,12	
Ti	1,56	127	67	6,83	3,73	
Со	1,22	5,97	48	7,86	4,62	
Nb	1,16	35,6	41	6,77	3,53	
Cr	1,01	41,6	34	5,76	-	
Fe	1,00	15,8	25	7,88	6,35	
Ni	0,98	4,42	20,3	7,63	5,23	
Mo	0,39	25,2	14,1	7,18	7,28	
Bi	0,36	0,46	2,5	8,32	-	
Zr	0,29	27,2	7,2	6,93	-	
Cu	0,26	1,26	3,1	7,72	7,94	
W	0,187	5,83	3,0	7,98	7,91	
Та	0,186	5,43	5,03	6,0	6,73	
Pt	0,11	0,125	2,3	8,96	6,83	
Ag	0,108	0,135	1,71	7,84	4,32	
Sn	0,94	0,558	1,02	7,35	2,63	
Pb	0,86	1,22	0,95	7,85	2,83	
Zn	0,44	0,908	0,63	9,42	1,32	
Cd	0,291	0,108	0,55	9,93	2,33	
Au	0.123	0.051	0.72	9.20	2.0	

Таблица 1. Экспериментальные значения коэффициента относительной чувствительности

Рис. 3. Зависимость относительного выхода ионов от потенциала первой ионизации φ_1 и энергии атомизации φ_a

Таблица 2.

Энергия бомбардирующих ионов W=2,0 кэВ												
	КОЧ				КОЧ				КОЧ			
Элемент	Ar^+	O^+	Xe	Элемент	Ar^+	O^+	Xe	Элемент	Ar^+	O^+	Xe	
Mg	6,91	60,4	92,0	Со	0,77	3,92	19,2	W	0,121	3,71	1,91	
Al	5,82	342	80,5	Nb	0,71	25,43	16,3	Та	0,09	3,53	3,12	
Nd	2,31	0,51	46,2	Cr	0,53	26,32	13,2	Pt	0,08	0,07	1,71	
Y	1,92	29,8	15,6	Fe	0,41	8,12	11,0	Ag	0,071	0,08	0,92	
V	1,70	148	60,2	Ni	0,18	2,93	10,3	Sn	0,060	-	0,73	
Ga	1,23	7,03	56,5	Мо	0,17	16,8	8,7	Pb	0,03	-	0,69	
Be	1,11	7,82	40,9	Bi	0,15	0,42	9,2	Zn	0,02	-	0,51	
Mn	1,42	6,71	23,2	Zr	0,14	15,2	5,3	Cd	-	-	0,41	
Ti	0,93	6,12	21,0	Cu	0,15	0,63	6,1	Au	-	-	0,21	
<i>W</i> =3,0 кэВ												
КОЧ						КОЧ			КОЧ			
Элемент	Ar^+	O^+	Xe	Элемент	Ar^+	O^+	Xe	Элемент	Ar^+	O^+	Xe	
Mg	7,92	67,1	917	Со	0,81	4,83	45,5	W	0,132	4,02	4,3	
Al	6,13	350	216	Nb	0,81	27,2	39,2	Та	0,120	3,92	7,2	
Nd	2,95	0,61	62,3	Cr	0,61	28,6	34,4	Pt	0,088	0,085	3,22	
Y	2,02	39.2	27,3	Fe	0,52	9,18	23,7	Ag	0,16	0,102	2,4	
V	2,21	152	56,7	Ni	0,48	3,62	21,6	Sn	0,61	0,357	1.3	
Ga	1,83	8,75	66,5	Мо	0,27	18,7	19,7	Pb	0,052	0,94	1,1	
Be	1,60	9,01	60,9	Bi	0,25	0,53	22,4	Zn	0,02	0,68	1,0	
Mn	1,61	7,71	58,8	Zr	0,21	18,74	11,4	Cd	0,01	0,82	1,3	
Ti	1,01	8,62	52,4	Cu	0,15	0,81	13,7	Au	0,01	0,03	1,1	
$W=4.5$ K $_{3}B$												
КОЧ					КОЧ				КОЧ			
Элемент	Ar^+	O^+	Xe	Элемент	Ar^+	O^+	Xe	Элемент	Ar^+	\mathbf{O}^+	Xe	
Mg	11,4	86,1	131	Со	1,22	5,97	48	W	0,187	5,83	3,0	
Al	9,62	447,2	129	Nb	1,16	35,6	41	Та	0,186	5,43	5,3	
Nd	4,13	1,11	83	Cr	1,01	41,6	34	Pt	0,112	0,108	2,3	
Y	2,87	5,12	72	Fe	1,00	15,8	25	Ag	0,108	0,135	1,71	
V	2,75	200	122	Ni	0,98	4,42	20,3	Sn	0,094	0,558	1,02	
Ga	2,28	13,2	83	Мо	0,39	25,2	14,1	Pb	0,086	1,22	0,15	
Be	2,19	15,5	72	Bi	0,36	0,46	2,5	Zn	0,034	0,918	0,63	
Mn	2,15	13,5	69	Zr	0,29	27,2	7,2	Cd	0,019	0,108	0,55	
Ti	1,56	127	67	Cu	0,262	1,26	3,1	Au	0,012	0,051	0,72	
					W=5,5	кэВ						
		КОЧ				КОЧ				КОЧ		
Элемент	Ar^{+}	O^+	Xe	Элемент	Ar^+	0+	Xe	Элемент	Ar ⁺	\mathbf{O}^+	Xe	
Mg	8,41	74,1	172	Со	1,01	5,73	65	W	0,179	4,91	6,0	
Al	6,62	374	150	Nb	0,93	32,1	56	Та	0,171	4,81	10,1	
Nd	3,11	0,8	89	Cr	0,88	35,7	50	Pt	0,101	0,107	4,6	
Y	2,21	47,1	81	Fe	0,81	12,1	41	Ag	0,93	0,121	3,41	
V	2,23	170	160	Ni	0,78	4,07	35	Sn	0,87	0,441	2,04	
Ga	1,91	11,2	95	Mo	0,35	21,7	31	Pb	0,81	1,02	1,9	
Be	1,82	12,3	87	Bi	0,31	0,37	42	Zn	0,029	0,87	1,26	
Mn	1,89	10,2	84	Zr	0,25	24,1	14	Cd	0,016	0,94	1,21	
Ti	1,31	115	81	Cu	0,21	0,98	18	Au	0,040	0,03	1,44	

Представляет интерес сопоставление данных табл. 1 по изменению КОЧ в зависимости от расположения элементов в Периодической системе. Исследования показали четкую корреляцию для

элементов, расположенных в одном ряду. Для большинства металлов (Mg, Zn, Al, Cd, Ti, Sn, Pb) в одном ряду значение КОЧ линейно уменьшается с увеличением порядкового номера Z. Более того,

прямые линии K_i^+ (Z) для различных групп параллельны.

Поскольку элементы одной группы периодической системы являются изоэлектронными, то есть число внешних электронов у них одинаково, то значительное уменьшение относительного выхода ВИ с увеличением Z следует связывать с влиянием строения внутренних оболочек на процесс эмиссии, а различия, наблюдаемые для одного периода, по-видимому, обусловлены изменением электронной структуры валентных электронов.

Влияние физико-химических свойств первичных ионов на коэффициент вторичной ионной эмиссии представляет определенный интерес для теории и практического использования. В связи с важностью вопроса в настоящей работе была исследована зависимость относительного выхода ионов ряда металлов от природы бомбардирующих ионов. В табл. 2 приведены значения КОЧ, рассчитанные на основе масс-спектров 27 металлов, полученных с помощью МСВИ при различных энергиях первичных ионов (Ar⁺, O⁺, Xe⁺).

Как видно из таблицы, выход ВИ отдельных металлов зависит не только от энергии бомбардирующих ионов, но и от их химических свойств. Так, например, если КОЧ для Bi, Pt, Ag и Au не отличаются по порядку величины при бомбардировке ее Ar^+ или O^+ , то для Al, V, Ti они отличаются на два порядка.

Таким образом, анализ результатов большого числа исследований указывает на наличие большого разброса данных по коэффициентам вторичной ионной эмиссии для одних и тех же элементов при различной энергии бомбардирующих ионов. Поскольку непосредственное сравнение данных в этом случае затруднено, то единственным путем оценки КОЧ различных элементов является сравнение их с аналогичным показателем распространенного изотопа одного из металлов. В таблице приведены относительные интенсивности ионов различных элементов в отношении к интенсивности ионов 56 Fe⁺. Видно, что разница относительных выходов одного и того же металла достигает более одного порядка (например, для Al^+ , Mg^+ и V^+) в зависимости от состава бомбардирующих ионов и в нескольких раз при изменении энергии бомбардирующих ионов.

Следует отметить, что получение воспроизводимых результатов при исследовании вторичных ионов – сложная задача. Было установлено влияние поверхностно-активных элементов, имеющих наибольшее сродство с кислородом, и поэтому наиболее предрасположенных к изменениям ВИЭ при изменении состава остаточных газов, то есть парциального давления кислорода. Однако, несмотря на разброс данных, можно сделать предварительный вывод о значительном изменении КОЧ от элемента к элементу, достигающем в некоторых случаях трех порядков. Поэтому для успешного использования предложенного каталога элементов при проведении систематических исследований необходимо соблюдение постоянства экспериментальных условий.

Заключение

В заключение следует отметить, что экспериментальное определение КОЧ является сложной задачей. Поэтому наличие хоть какой-то информации о дискриминации отдельных элементов во вторичной ионной эмиссии, на наш взгляд, принесет пользу при расшифровке массовых спектров анализа твердых тел. Дело в том, что реально на КОЧ (независимо от метода ионизации атомов твердого тела) влияют все стадии масс-спектрометрического анализ твердых тел. Прежде всего это физика процессов, включающая в себя стадии атомизации, ионизации различных элементов. Во вторых, дискриминация ионов в аналитической системе и в элементах ионнооптической системы. Другими словами, КОЧ нужно рассматривать как результат коллективного взаимодействия различных процессов. Это, как нам кажется, упростит задачу теоретического и экспериментального исследований КОЧ, так как за каждый вид дискриминации отвечает конкретный физический процесс, поддающийся исследованию.

ЛИТЕРАТУРА

1. Beske H.E. Zangew. // Positive secondary Phys. 1962, 14, 30.

2. *Файнберг В.С., Рамендик Г.И.* О возможности описания с помощью квазиравновесной модели относительного выхода вторичных ионов в масс-спектрометрии // Журнал аналитической химии. 1991. Т.46. В.2. С. 241–252.

3. *Newbury D.E., Simons D.* Secondary emission of molecular ions from light elements targets // SIMS – IV Proc. 4th Conf. Berlin. 1984. P. 101.

4. *Рамендик Г.И., Манзон Б.М., Тюрин Д.А.* Квазиравновесная модель образования ионов в исследовании искровой и лазерной масс-спектрометрии // Журн. Аналит. химии. 1989. Т. 44. В.6. С. 996–1007.

5. Bensen K.M., Surkin P., Gilbers R, Adams F. Secondary ion mass-spectrometry depth profiling and simultaneous in activation // Spectrum chim. acta. 1984. V.38. № 5. P. 843–861.

6. *Teylor S.E., McLennon S.M.* Molecular rearrangement cluster formation in the SIMS of fluoride salts // Chem. Geol. 1983. 39. № 3/4. P. 273.

7. *Ramkumar K.L., Datta B.P., Kavimandan V.D.* On a mechanism of secondary emission of polyatomic particles // F Z. Z. Anal chem. 1989. B 318. №1. S.12.

8. *Datta B.P., Yain H.C.* Focusing errors of a multiple–focusing time-of-flight mass spectrometer with an electrostatic sector fields // Int.Y. Mass Spectrum Jon Pros 1986. V.68. № 3. P. 219.

9. Vos L., Van Cricken R. Cluster induced secondary ion emission // F Z. Z. Anal chem. 1985. B. 309. S. 32.

10. *Сысоев А.А., Иванов В.П.* Высоковакуумный быстродействующий шлюз // Приборы и техника эксперимента. 1995. Т.55. № 3. С.137–142.

Поступила 18.10.07

Summary

Mass-spectrometric research of products of secondary ion emission (MSSI) is a direct method of analysis of element and isotop content of conducting and non-conducting solid substances. Similar to other methods of mass-spectrometric analysis, MSSI also has some analytical characteristics, featured with possibility of establishment simple relation between concentration of analyzed element and registered initial signal.