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Изучены возможности технологии и оборудования плазменно-электролитной обработки для 

получения электролитов-суспензий с графеновыми частицами путем расщепления графитовых 

электродов. Установлены закономерности расщепления графита в анодно-катодных процессах 

плазменно-электролитной обработки. Найдено, что электрические режимы технологического 

знакопеременного источника тока позволяют путем плазменно-химического расщепления         

графитов получать электролиты-суспензии с графеновыми частицами с различной степенью 

дефектности: от многослойных графеновых частиц (катодный импульсный режим) до частиц 

оксида графена с различной степенью функционализации (анодный и промежуточные                    

режимы). Установлено, что плазменно-электролитное воздействие на высокотекстурированный 

пиролитический графит приводит в отличие от полигранулярного графита к более чем десяти-

кратному распуханию электрода. Показано, что плазменно-электролитная обработка синтети-

ческих графитов проявляет высокую эффективность получения электролитов-суспензий с                

графеновыми частицами.  
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ВВЕДЕНИЕ 
 

Эффективным методом синтеза нанострук-

турных композитных покрытий является метод                 

плазменно-электролитной обработки (ПЭО), 

позволяющий получать покрытия и модифици-

рованные поверхностные слои металлов                      

толщиной до сотен микрометров с разно-

образной структурой и с широким спектром 

функциональных свойств [1–4]. Изменяя состав 

электролита различными добавками, можно     

придать поверхностному слою характеристики, 

присущие добавленному компоненту. Графен с 

его рекордными механическими и физическими 

свойствами дал возможность получения новых 

наноструктурных композитных материалов [5–7] 

и покрытий [8–12]. В [8] исследовали                       

влияние добавки графена на коррозионную стой-

кость ПЭО-покрытия магниевого сплава AZ91. 

Найдено, что графен в ПЭО-покрытии уменьшил 

количество и размер микропор и трещин, а также 

увеличил микротвердость и улучшил корро-

зионную стойкость. В [10] методом ПЭО в                      

силикатно-гипофосфитном электролите с               

добавкой оксида графена на титановом сплаве 

Ti6Al4V синтезированы покрытия толщиной от 

40 до 50 мкм. Найдено, что добавление оксида 

графена 0,5 г/л в базовый силикатный гипофос-

фитный электролит приводит к снижению                   

скорости изнашивания более чем в 1,5 раза. Это 

происходит из-за образования смазочного             

трибослоя в паре трения. Расслоение покрытий 

при изнашивании происходит вследствие                 

контактной усталости. При добавке оксида             

графена в электролит этот процесс замедляется 

более чем в 4 раза. В [9] показано, что ПЭО-

покрытие на сплаве Д16Т, полученное в электро-

лите с добавкой графена, имеет более плоскую, 

плотную и компактную морфологию поверх-

ности и лучшие физические характеристики с 

более высокой твердостью и толщиной по срав-

нению с ПЭО-покрытием, полученным в                  

электролите без графена. В [11] ПЭО алюми-

ниевого сплава Д16 проводили в слабощелочных 
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электролитах КОH 2 г/л и Na2SiO3 9 г/л без                   

добавок и с добавлением порошка графена                

0,5 г/л или суспензии оксида графена 0,5 г/л. 

После ПЭО в анодно-катодном режиме при            

соотношении анодного и катодного токов 1:1, 

средней плотности тока 10 А/дм2 и продолжи-

тельности обработки 180 мин скорость                        

абразивного износа с добавкой графеновых                 

частиц (ГЧ) стала на 40% ниже скорости износа 

образцов при ПЭО без добавок. ПЭО с оксидом 

графена приводило к 30%-му увеличению абра-

зивной стойкости. В [12] исследовано влияние 

ГЧ на основные характеристики ПЭО-покрытий 

на сплаве Д16. Установлено, что ГЧ с концен-

трацией 0,25–1 г/л в силикатно-щелочных                 

электролитах интенсифицируют микро-

плазменные процессы с увеличением толщины 

покрытия до 2 раз. Одновременно с этим участие 

частиц графена в процессе формирования               

покрытий приводит к увеличению содержания в 

них корунда и, как следствие, почти к                          

двукратному его росту. Показано также, что при 

включении ГЧ в состав покрытия обнаружи-

вается значительное их влияние на триботехни-

ческие характеристики: в два раза снижаются 

коэффициент трения и интенсивность изнаши-

вания. 

Для добавок ГЧ в электролит применяют              

порошки или суспензии оксида графена разных 

производителей. Вместе с тем суспензия ГЧ для 

ПЭО может быть получена на том же оборудо-

вании ПЭО путем плазменно-электролитного 

расщепления графитовых электродов. Такие ра-

боты начаты на оборудовании ПЭО МГТУ 

«Станкин» в [13]. Плазменно-электролитное 

расщепление графита обладает рядом преиму-

ществ синтеза углеродных наноструктур: эколо-

гичность (использование нейтральных слабоще-

лочных растворов в отличие от всех химических 

методов, применяющих концентрированные 

кислоты), одностадийность, простота очистки 

синтезируемого материала, возможность полу-

чения как практически неокисленных и безде-

фектных графеновых частиц, так и структур с 

высоким содержанием кислородсодержащих 

функциональных групп [13–17]. На поверхности 

погруженного в электролит графитового             

электрода при напряжениях несколько сотен 

вольт возникают электрические разряды, приво-

дящие к расщеплению графита с образованием 

графитовых нано- и микрочастиц. Чередование 

катодных импульсов напряжения, приводящих к 

образованию электролитной плазмы и                           

разрушению графитового электрода, с анодными 

импульсами, обеспечивающими функцио-

нализацию его поверхности, является                            

эффективным методом синтеза структур             

графеновых наночастиц. При этом варьирование 

амплитуды, длительности и соотношения                

импульсов совместно с использованием электро-

литов различного состава позволяет получать 

графеноподобные структуры с различной                   

степенью функционализации. Такие возмож-

ности предоставляют технологические                          

источники тока, разработанные для микро-

дугового оксидирования металлов и получения            

керамикоподобных нанокомпозитных покрытий 

[2]. В настоящей работе закономерности                                 

расщепления графита в плазменно-

электролитных процессах синтеза графеновых 

частиц и возможности получения электролитов-

суспензий для последующего использования в 

технологии ПЭО металлов изучали на разрабо-

танном в МГТУ «Станкин» оборудовании ПЭО.  
 

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ 
 

На установке плазменно-электролитной обра-

ботки МГТУ «Станкин» для формирования                

защитных керамикоподобных покрытий на             

поверхности широкого класса вентильных                     

сплавов используются тиристорно-

конденсаторные источники технологичного тока, 

упрощенная схема одного их них приведена на 

рис. 1 [2]. Балластный конденсатор С2 обеспечи-

вает анодный и катодный импульсы напряжения 

с равными средними анодными и катодными 

токами. На эти импульсы могут накладываться, 

соответственно, анодный (формируемый плечом 

С1, VS1, VS2) и катодный (формируемый плечом 

С3, VS3, VS4) дополнительные импульсы 

напряжения. Схема управления СУ включением 

тиристоров обеспечивает формирование крутых 

передних и задних фронтов анодных и катодных 

импульсов напряжения, а также изменение                

соотношения катодного и анодного токов через 

обрабатываемый электрод. 

В работе использовали несколько электри-

ческих режимов ПЭО с эпюрами подаваемого на          

графитовый электрод напряжения,                               

приведенными на рис. 2. 

В качестве погружаемого в электролит                    

образца использовали пластины из синтети-

ческих графитов: полигранулярного графита 

марки ЭЭПГ и высокотекстурированного пиро-

литического графита (ВТПГ) с размерами                  

725 мм толщиной 2–3 мм. Оценку кристалли-

ческой текстуры образцов проводили методом 

рентгеноструктурного анализа на дифрактометре 

ДРОН-4 в CuKα-излучении [18]. Измеряли                

интенсивность отражения в зависимости от угла 

поворота образца вокруг оси гониометра при 

фиксированном положении счетчика. Съемка 

текстурограммы в виде зависимости интенсив-

ности отраженного рентгеновского излучения от 
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Рис. 1. Упрощенная схема тиристорно-конденсаторного технологического источника тока, подключенного к электролитной 

ванне с обрабатываемым электродом Е1 [2]. 
 

  

 
 

Рис. 2. Эпюры напряжения на электроде для различных электрических режимов ПЭО. 
 

угла поворота относительно направления [001] 

показала следующее. Высокоориентированный 

пиролитический графит (УПВ-1Т) является 

наиболее близким к монокристаллу графита. Его 

мозаичная структура характеризуется осевой 

текстурой в направлении [001], нормальном к 

поверхности пластинок с разориентировкой    

базисных плоскостей кристаллитов не более 50′. 

Используемый в работе высокотекстурирован-

ный пиролитический графит менее упорядочен, 

чем УПВ-1Т, с разориентировкой базисных 

плоскостей около 3°. Соответственно, полигра-

нулярные анизотропные графиты являются 

бестекстурными.  

Из широкого набора слабощелочных электро-

литов для микродугового оксидирования                     

металлов [2] с учетом опыта ПЭО углеродных 

материалов для получения оксидных защитных 

покрытий [19] использовали водный щелочной 

электролит с концентрацией КОH до 2 г/л.  

Наряду с ПЭО в анодно-катодном режиме при 

соотношении анодного и катодного токов 1:1 со 

средней плотностью 10 А/дм2 применяли               

асимметричные электрические режимы с доми-

нированием либо анодного, либо катодного                   

токов, с изменяемыми передними фронтами   

импульсов (рис. 2). Время ПЭО не превышало             

40 мин. 
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Рис. 3. Спектры КРС графеноподобных частиц.  
 

Анализ полученной при ПЭО суспензии, а 

также воздействия ПЭО на графитовые                             

электроды проводили методами оптической, 

растровой электронной микроскопии (РЭМ) и 

спектроскопии комбинационного рассеяния        

света (КРС) с длиной волны лазера 473 нм.  
 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 
 

Расщепление графитовых образцов при ПЭО 

сопровождается образованием ярко светящихся     

микроплазменных разрядов на поверхности 

электрода, нагревом и испарением электролита. 

ПЭО приводит к значительному уменьшению 

прозрачности электролита, тем большему, чем 

больше потеря массы электрода. Подбор                   

электрического режима ПЭО по получению 

наибольшей концентрации углеродных частиц в 

электролите проводили для графита ЭЭПГ.               

Оказалось, что наибольшая потеря массы                     

электрода и наибольшее потемнение электролита 

происходили для катодного импульсного режима 

ПЭО. Оценка показывает, что за 40 мин                         

обработки в таком режиме концентрация ГЧ в 

суспензии по потере массы графитового                    

электрода достигает 0,55 г/л, что соизмеримо в 

практике ПЭО металлов в электролитах-

суспензиях с графеновыми частицами [8–12]. 

Для исследования полученной при ПЭО              

суспензии методом КРС использовали                     

высушенные осадки электролита на кремниевых 

подложках. Подложками служили пластины  

монокристаллического кремния марки КДБ-10. 

Осадки суспензии получали трехкратным окуна-

нием кремниевых пластинок в электролит и            

последующим высушиванием на воздухе. Полу-

ченные спектры сравнивали со спектрами КРС 

графена, оксида графена [20, 21] и коллоидного 

графита (рис. 3). Их спектры содержат два              

основных пика первого порядка: пик G (графи-

товый пик) при смещении частоты Δk  1580 см–1 

и пик D, обусловленный несовершенством              

кристаллической структуры при                                   

Δk  1350 см-1, а также соответствующие им  

пики второго порядка в области смещений                                   

2100–3500 см-1: 2D-пик (обертон D-пика), D+G 

(сумма обертонов D- и G-пиков) и 2G-пик        

(обертон G-пика) [22]. Доминирование G-пика по 

сравнению с 2D-пиком в спектрах КРС порошка 

графена указывает на его многослойную                       

структуру. Функционализация графена приводит 

к разупорядочению его структуры, что является 

причиной возрастания интенсивности D-пика и 

уширению пиков в спектрах КРС. 

Спектры КРС осадков частиц суспензии на 

кремниевой подложке после ПЭО графита ЭЭПГ 

для различных режимов ПЭО представлены на 

рис. 4. Их сравнение со спектрами для графена и 

оксида графена показывает, что путем изменения 

электрических режимов ПЭО можно получать 

суспензии с графеноподобными структурами с 

различной степенью дефектности: от                              

многослойных графеновых наночастиц                         

(катодный импульсный режим) до наночастиц 

оксида графена с различной степенью функцио-

нализации (остальные режимы). 

Оптическая микроскопия на просвет капли 

электролита между предметным и покровными                  

стеклами показывает наличие случайно распре-

деленных по полю зрения микрочастиц округлой              

формы    с    поперечным   размером   до    5  мкм.   
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Рис. 4. Спектры КРС осадков частиц суспензий на кремниевой подложке после ПЭО графитов ЭЭПГ и ВТПГ для                   

различных электрических режимов. 
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Рис. 5. Микрофотографии суспензий на просвет (а, б) и распределение частиц в суспензиях по сечению (в, г) после ПЭО 

ЭЭПГ (а, в) и ВТПГ (б, г) в импульсном катодном режиме длительностью 40 мин.  
 

На рис. 5 наряду с микрофотографиями                           

суспензий, полученных при ПЭО электродов из 

ЭЭПГ и ВТПГ в импульсном катодном режиме, 

приведены результаты их компьютерной обра-

ботки в виде распределения частиц по их                

площади. Видно, что подавляющее число частиц 

имеет поперченные размеры меньше 3 мкм. 

Причем разброс размеров частиц для ВТПГ               

несколько больше, чем графита ЭЭПГ. 

Наибольшие различия ПЭО ВТПГ и ЭЭПГ 

проявились в воздействии ПЭО на электроды из 

этих графитовых материалов. На фото электрода 

после ПЭО ВТПГ видно, что его верхняя по         

отношению к подложке сторона при пиролити-

ческом осаждении углерода вспучилась на вели-

чину, на порядок превышающую исходную      

толщину образца (рис. 6).  

При этом нижняя сторона визуально осталась 

близкой  к  исходной. Такого эффекта макроско- 
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Рис. 6. Фото электрода из ВТПГ до (а) и после (б) ПЭО с длительностью 40 мин в импульсном катодном режиме. 
 

  
(а) (б) 

Рис. 7. РЭМ-изображение электрода из графита ЭЭПГ до (а) и после (б) ПЭО с длительностью 40 мин в импульсном             

катодном режиме. 
 

пического вспучивания при ПЭО электрода,  

вырезанного из массивной заготовки графита 

ЭЭПГ, не происходит (рис. 7).  

Обнаруженная анизотропия размерного изме-

нения при ПЭО ВТПГ, очевидно, связана с            

различием микроструктуры верхней и нижней 

сторон ВТПГ, обусловленным процессом пиро-

литического осаждения углерода на подложку и 

ростом зерен графита в виде конусов [23, 24].              

На РЭМ-изображениях поверхность верхней 

стороны ВТПГ близка к зеркальной (рис. 8). 

РЭМ вспученной после ПЭО части ВТПГ пока-

зывает расслоение в виде пластинок с размерами 

в десятки мкм, ориентированных перпендику-

лярно исходной плоскости образца. РЭМ нижней 

стороны ВТПГ показывает замысловатые узоры 

из ломаных и закрученных светлых линий,               

обусловленные, согласно РЭМ в режиме реги-

страции быстрых отраженных электронов (BSE), 

более тяжелыми, чем атомы углерода, интерка-

лированными атомами калия в графите из                

электролита. Увеличенное изображение показы-

вает слоистую морфологию из графитовых                 

вертикально стоящих микропластинок. Между 

пластинками наблюдаются субмикронные                   

интеракалированные частицы калия. 

Объяснение наблюдаемых закономерностей 

при плазменно-электролитном расщеплении 

графита представляет сложную задачу вслед-

ствие многообразия и сложности физико-

химических процессов, протекающих на границе 

раздела, которую предстоит еще решить [14–17]. 

Это инжекция (интеркаляция) химически                    

активных частиц, взрывное выделение газооб-

разных продуктов электродных реакций,                    

вскипание жидкости и образование парогазовой 

оболочки, ионизация газа в этой оболочке и                

создание вокруг электрода неравновесной низко-

температурной плазмы, а также наличие кавита-

ционных, электрофлотационных и гидродинами-

ческих эффектов. Эти процессы в большей или 

меньшей степени участвуют в расщеплении      

графита в виде эрозии его поверхности, приво-

дящей к образованию характерной ламеллярной 

структуры.  

В основе любого электрохимического синтеза 

ГЧ лежит наложение на графитовый электрод             

анодного и/или катодного импульса амплитудой 

от 2–5 до 200–500 В (см., например, [14]).                  

Воздействие условно делят на низковольтное                 

(≤ 15 В) и высоковольтное (> 15 В). При низко-

вольтном воздействии на границе раздела проте-

кают преимущественно электродные реакции, а 

при высоковольтном к ним добавляется ряд 

энергоемких физических процессов. Считается, 

что   отщепление   от   поверхности   графита  ГЧ 

(а) (б) 
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Рис. 8. РЭМ-изображения электрода из ВТПГ до (а, в) и после (б, г) ПЭО верхней (а, б) и нижней (в, г) сторон образца. 

Контраст РЭМ-изображений: (а–в) – во вторичных электронах; (г) – в отраженных электронах. 
 

обусловлено в основном интеркаляцией ионов 

электролита в межплоскостное пространство с 

последующим образованием газообразных          

продуктов, вызывающих отщепление ГЧ от         

материкового графита. Из анализа в [14]                    

процессов электрохимического синтеза ГЧ            

можно выделить закономерности, которые явля-

ются общими как для низковольтного электро-

химического процесса, так и изучаемого                    

высоковольтного плазменно-электролитного                          

расщепления графита. В частности, при низко-

вольтном электрохимическом расщеплении               

путем последовательного наложения катодного 

либо анодного потенциала и выбора соответ-

ствующей среды (кислой, нейтральной или    

щелочной) для проведения расщепления можно в 

широком диапазоне изменять количество кисло-

родсодержащих функциональных групп в синте-

зируемых ГЧ. Кроме того, наиболее эффективно 

расщепление графитовых электродов происходит 

при использовании несимметричных знакопере-

менных импульсов. При этом катодные                       

импульсы способствуют синтезу слабо функцио-

нализированных ГЧ. И, наконец, воздействие            

на высокоориентированный (высокотекстури-

рованный) пиролитический графит сильно отли-

чается от аналогичного воздействия на менее 

упорядоченные графитовые материалы, среди 

которых для синтеза ГЧ используют синтети-

ческий и природный графиты, мелкодисперсный 

графит, графитовую фольгу и даже карандашные 

стержни. В случае высокотекстурированных 

пиролитических графитов электрохимическое 

воздействие может приводить только к вспучи-

ванию электрода без отшелушивания ГЧ. На их 

поверхности при этом образуются нано-

стеночные структуры с графеноподобными               

частицами с близкой к ортогональной ориента-

цией по отношению к исходной поверхности 

электрода. В [14] отмечается также сущест-

венное различие низковольтного и                        

высоковольтного плазмоэлектрохимического                        

расщепления графита, состоящего в том, что 

синтез малослойных ГЧ происходит только в 

последнем случае, тогда как при расщеплении 

графита в низковольтном режиме получаются 

лишь многослойные углеродные частицы. 

В целом ПЭО синтетических графитов пока-

зывает высокую эффективность получения                            

электролитов-суспензий с графеновыми части-

цами. Интегрирование этого процесса в                      

технологию ПЭО металлов позволит сущест-

венно расширить ее возможности по получению 

функциональных нанокомпозитных покрытий. 
 

ВЫВОДЫ 
 

Показаны возможности технологии и              

оборудования плазменно-электролитической                          

обработки для получения электролитов-

суспензий с графеновыми частицами.  
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Электрические режимы тиристорно-

конденсаторного технологического источника 

тока позволяют путем плазменно-химического 

расщепления графитов получать электролит-

суспензию с графеновыми частицами с                        

различной степенью дефектности: от много-

слойных графеновых частиц (катодный                         

импульсный режим) до частиц оксида графена с 

различной степенью функционализации                    

(анодный и промежуточные режимы).  

Интегрирование полученных результатов в 

технологию электролитно-плазменной обработки                    

металлов позволит существенно расширить ее 

возможности по нанесению функциональных 

нанокомпозитных покрытий в электролитах-

суспензиях. 
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Summary 
 

The possibilities of plasma-electrolyte treatment tech-

nology and equipment for obtaining electrolyte suspen-

sions with graphene particles by exfoliation of graphite 

electrodes were studied. The regularities of graphite exfo-

liation in the anode-cathode processes of plasma-

electrolytic treatment were established. It was found that 

the electrical modes of the technological alternating    

current source allow, through plasma-chemical exfoliation 

of graphite, to produce the electrolyte suspensions with 

graphene particles with varying   degrees of defective-

ness: from multilayer graphene particles (cathode pulse 

mode) to graphene oxide particles with varying degrees of 

functionalization (anode and intermediate modes). It has 

been established that plasma-electrolytic exposure to 

highly textured pyrolytic graphite, unlike polygranular 

graphite, causes the electrode to swell more than tenfold. 

It is shown that plasma-electrolyte treatment of synthetic 

graphites is highly effective for obtaining electrolyte 

suspensions with graphene particles.  
  

Keywords: graphene, graphene oxide, graphite,                

plasma-electrolyte treatment, suspension, optical micros-

copy, scanning electron microscopy, Raman                               

spectroscopy  
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