Расчет основных усредненных характеристик дрейфа свободных электронов в металлическом проводнике с электрическим током проводимости

М. И. Баранов

Научно-исследовательский и проектно-конструкторский институт «Молния» Национального технического университета «Харьковский политехнический институт», г. Харьков, 61013, Украина, e-mail: <u>baranovmi@kpi.kharkov.ua</u>

> Поступила в редакцию 19.04.2021 После доработки 12.05.2021 Принята к публикации 14.05.2021

Приведены результаты приближенного расчета усредненных значений скоростей v_{mz} продольного дрейфа свободных электронов, круговых частот ω_{mz} изменения продольных электронных волн де Бройля и длин λ_{mz} продольных электронных волн де Бройля в металле круглого цилиндрического проводника с электрическим аксиальным током проводимости $i_0(t)$ различных видов (постоянного, переменного и импульсного) и амплитудно-временных параметров (АВП). Результаты верификации полученных расчетных соотношений для скоростей v_{mz} дрейфа свободных электронов и длин λ_{mz} электронных волн де Бройля в рассматриваемом проводнике указывают на их правомерность и работоспособность. Полученные результаты подтверждают квантово-волновую природу электрического тока проводимости $i_0(t)$ указанных видов и АВП в металлическом проводнике.

Ключевые слова: металлический проводник, электрический ток проводимости, дрейф свободных электронов в проводнике, продольные электронные волны де Бройля, усредненные характеристики дрейфа электронов

УДК 621.3.01:621.313 <u>https://doi.org/10.52577/eom.2022.58.1.79</u> СОСТОЯНИЕ И АКТУАЛЬНОСТЬ ЗАДАЧИ

Электрический ток проводимости $i_0(t)$ различных видов (постоянный, переменный и импульсный) И амплитудно-временных параметров (АВП) в обычном или сверхпроводящем металлическом проводнике, как известно, представляет собой направленное движение (дрейф) под действием приложенного к нему электрического напряжения его коллективизированных свободных электронов, характеризующихся усредненной объемной плотностью (концентрацией) n_{em}, численно составляющей для таких основных проводниковых материалов в области электротехники и электроэнергетики, как медь, алюминий и сталь порядка 10²⁹ м⁻³ [1, 2]. Согласно [2–5] электрический ток проводимости $i_0(t)$ в металлическом проводнике любой конфигурации имеет квантово-волновую природу, продольные (радиальные) и его пространственно-временные распределения в круглом проводнике конечных размеров подчиняются закономерностям квантовой физики и описываются соответствующими квантованными продольными $\psi_{nz}(z, t)$ и радиальными $\psi_{nr}(r, t)$ волновыми функциями Шредингера [1, 2]. При этом дискретный набор таких волновых функций для проводника с током проводимости

 $i_0(t)$ произвольных АВП определяется квантовым числом $n = 1, 2, 3, ..., n_m$, где $n_m = 2n_0^2$ – максимальное значение квантового числа n, а n₀ главное квантовое число, равное числу электронных оболочек в атомах металла проводника и соответственно номеру периода в Периодической системе химических элементов Менделеева, которому этот металл принадлежит (например, для медного, цинкового и стального проводников $n_0 = 4$, а $n_m = 32$ [1]; для алюминиевого проводника $-n_0 = 3$, а $n_m = 18$ [1]). Указанные квантованные пространственновременные волновые функции Шредингера определяют и распространяющиеся в металле проводника квантованные электронные волны де Бройля [1-6]. Квантовая величина *n* носит стохастический (случайный) характер, и заранее знать ее конкретное значение в том или ином практическом случае не представляется возможным. В этой связи для решения многих прикладных электротехнических задач (например, расчетного определения продольнорадиальных распределений В круглых токонесущих частях кабельно-проводниковой продукции (КПП) силовых электрических цепей энергообъектов в аварийном режиме их работы, то есть в случае короткого замыкания и больших токовых перегрузок в них, неоднородных электромагнитных и температурных полей и др.), определяемых дрейфом свободных электронов металлического проводника с током проводимости $i_0(t)$ различных видов и АВП, практический интерес представляют усредненные значения квантового числа *n* и соответственно ИМ определяемые усредненные значения скоростей v_m дрейфа электронов, круговых частот ω_m изменения электронных волн де Бройля и длин λ_{*m*} электронных волн де Бройля в проводящем материале проводника. При этом нам не следует забывать и о фундаментальных электротехнических задачах, направленных на дальнейшее углубление наших знаний про электрофизические механизмы формирования и распределения электрического тока проводимости $i_0(t)$ различных видов и ABΠ токонесущих частях КПП.

Цель статьи – расчетное определение усредненных значений скоростей v_{mz} продольного дрейфа свободных электронов, круговых частот ω_{mz} изменения продольных электронных волн де Бройля и длин λ_{mz} продольных электронных волн де Бройля в металлическом проводнике конечных размеров с электрическим аксиальным током проводимости $i_0(t)$ различных видов и АВП.

ПОСТАНОВКА ЗАДАЧИ

Ограничимся рассмотрением случая, когда протекающий вдоль немагнитного круглого цилиндрического проводника радиусом r_0 и длиной $l_0 >> r_0$ (рис. 1) электрический ток проводимости $i_0(t)$ с теми или иными АВП практически равномерно распределен по его сплошному поперечному сечению $S_0 = \pi r_0^2$. Принимаем, что продольное распределение в проводнике его дрейфующих свободных электронов подчиняется квантованным одномерным волновым функциям Шредингера $\psi_{nz}(z, t)$ [2–5].

Рис. 1. Общий вид круглого цилиндрического проводника радиусом r_0 и длиной $l_0 >> r_0$ с аксиальным током проводимости $i_0(t)$, где Δz_{nh} , Δz_{nc} – соответственно длина (ширина) «горячего» и «холодного» продольных участков проводника [5].

Требуется с учетом квантово-механического подхода к продольному волновому распре-

делению дрейфующих свободных электронов в кристаллической структуре рассматриваемого проводника с электрическим током проводимости $i_0(t)$ различных видов и АВП расчетным путем определить в принятом приближении скоростей усредненные значения v_{mz} дрейфа свободных электронов, продольного круговых частот ω_{mz} изменения продольных электронных волн де Бройля и длин λ_{mz} продольных электронных волн де Бройля в однородном немагнитном металле данного проводника.

ОСНОВНЫЕ РАСЧЕТНЫЕ СООТНОШЕНИЯ

Квантованные продольные скорости v_{nz} дрейфа свободных электронов в исследуемом проводнике с током $i_0(t)$ определяются следующим квантово-механическим соотношением [2–5]:

$$v_{nz} = nh / (2m_e l_0),$$
 (1)

где $h = 6,626 \times 10^{-34}$ Дж·с – постоянная Планка [1]; $m_e = 9,109 \times 10^{-31}$ кг – масса покоя электрона [1]; $n = 1,2,3...,n_m$ – квантовое число, максимальное численное значение которого равно $n_m = 2n_0^2$.

Учитывая (1), для усредненного значения скорости v_{mz} продольного дрейфа свободных электронов в рассматриваемом нами проводнике длиной l_0 можно записать следующее выражение:

$$v_{mz} = n_{0m} h / (2m_e l_0), \tag{2}$$

где *n*_{0*m*} – усредненное значение квантового числа *n*.

Согласно [2, 7] величина n_{0m} может быть рассчитана по следующему соотношению:

$$n_{0m} \approx n_m / \ln n_m. \tag{3}$$

Тогда из (2) и (3) для усредненного значения скорости v_{mz} продольного дрейфа коллективизированных свободных электронов в металлическом проводнике с током проводимости $i_0(t)$ имеем:

$$v_{mz} \approx n_m h / (2m_e l_0 \ln n_m). \tag{4}$$

Из (4) видно, что чем меньше будет длина l_0 металлического проводника, тем для него будет больше усредненное значение продольной скорости v_{mz} дрейфа его свободных электронов. А раз так, то с уменьшением величины l_0 становится возможным получение в исследуемом металлическом проводнике более быстрых в среднем коллективизированных дрейфующих электронов, обладающих в среднем и бо́льшими запасами кинетической энергии, рассеиваемой согласно [1] на узлах кристаллической решетки металла проводника. В этой связи для нас становится более понятным тот экспериментально установленный в области сильноточной высоковольтной импульсной техники (ВИТ) факт, что для достижения при электрическом взрыве (ЭВ) в той или иной среде (например, в воздухе или тонкого металлического вакууме) провода поперечным сечением S₀, осуществляемом за через него счет пропускания большого импульсного тока $i_0(t)$ с усредненной плотностью $\delta_0(t) \approx i_0(t)/S_0$ порядка 100 кА/мм² [2], максимальной температуры в образующейся при его ЭВ «металлической плазме», длину l₀ такого металлического провода необходимо выбирать минимально возможной [2, 8].

Исходя из [2–7] для расчета квантованных собственных круговых частот ω_{nz} изменения продольных электронных волн де Бройля в проводнике с электрическим аксиальным током проводимости $i_0(t)$ можно воспользоваться следующей квантово-механической формулой:

$$\omega_{nz} = \pi n^2 h / (2m_e l_0^2).$$
 (5)

Для усредненного значения круговой частоты ω_{mz} изменения продольных электронных волн де Бройля в исследуемом металлическом проводнике из (5) имеем:

$$\omega_{mz} = \pi n_{0m}^2 h / (2m_e l_0^2). \tag{6}$$

В результате с учетом (3) и (6) для искомого усредненного значения круговой частоты ω_{mz} изменения продольных электронных волн де Бройля в металле проводника с током $i_0(t)$ получаем:

$$\omega_{mz} = \pi n_m^2 h / [2m_e l_0^2 (\ln n_m)^2].$$
 (7)

При расчетном определении квантованных длин λ_{nz} продольных электронных волн де Бройля в металле исследуемого проводника с током $i_0(t)$ используем следующее соотношение [2–7]:

$$\lambda_{nz} = 2l_0 / n. \tag{8}$$

Следует отметить то одно принципиальное положение, что в соответствии с (8) вдоль рассматриваемого проводника с дрейфующими свободными электронами всегда размещается только целое число продольных электронных полуволн де Бройля квантованной длиной $\lambda_{nz}/2 = l_0/n$ [2–7].

Согласно (8) для усредненного значения длины λ_{mz} продольных электронных волн де Бройля в металле исследуемого проводника с током проводимости $i_0(t)$ имеем:

$$\lambda_{mz} = 2l_0 / n_{0m}. \tag{9}$$

В результате после подстановки в (9) величины n_{0m} из (3) для усредненного значения длины λ_{mz} продольных электронных волн де

Бройля в металле рассматриваемого проводника находим:

$$\lambda_{mz} \approx 2l_0 \ln n_m / n_m. \tag{10}$$

Укажем, что приведенные соотношения (4), (7) и (10) для усредненных характеристик v_{mz} , ω_{mz} и λ_{mz} дрейфа свободных электронов в металлическом проводнике с аксиальным током проводимости *i*₀(*t*) были получены при принятом ограничении, связанном с таким радиальным распределением тока проводимости $i_0(t)$ по сечению S₀ проводника, при котором это распределение близко к равномерному ($\Delta_0/r_0 \geq 1$, где Δ_0 – глубина проникновения магнитного поля тока $i_0(t)$ B проводящий материал проводника [1]). Для металлических проводников с резко неравномерным распределением тока $i_0(t)$ по их поперечным сечениям S_0 , характерным для его больших скоростей изменения во времени t при выполнении неравенства $\Delta_0/r_0 < 1$, указанные соотношения (4), (7) и (10) могут быть использованы главным образом в случае инженерных оценочных расчетов волновых характеристик v_{mz} , ω_{mz} и λ_{mz} дрейфа электронов.

ВЕРИФИКАЦИЯ РЕЗУЛЬТАТОВ РАСЧЕТА УСРЕДНЕННОЙ СКОРОСТИ *vmz* ПРОДОЛЬНОГО ДРЕЙФА СВОБОДНЫХ ЭЛЕКТРОНОВ В ПРОВОДНИКЕ

Данную проверку достоверности полученной с использованием аппарата квантовой физики формулы (4) для определения усредненного значения продольной скорости v_{mz} дрейфа свободных электронов в металлическом проводнике с током $i_0(t)$ выполним путем сравнения результатов расчета v_{mz} по (4) и известной в теории электричества формуле, имеющей следующий вид [2, 9]:

$$v_{mz} \approx \delta_{0m} / (\sqrt{2}e_0 n_{em}), \qquad (11)$$

где $\delta_{0m} \approx I_{0m}/S_0$ – амплитуда плотности тока $i_0(t)$ в металле проводника поперечным сечением S_0 ; I_{0m} – амплитуда переменного (импульсного) тока проводимости $i_0(t)$; $e_0 = 1,602 \times 10^{-19}$ Кл – модуль электрического заряда электрона [1]; n_{em} – усредненная объемная плотность свободных электронов в металле исследуемого проводника до начала протекания по нему электрического тока проводимости $i_0(t)$.

Величина n_{em} , как известно [1], равна концентрации N_0 атомов металла проводника, умноженной на его валентность, определяемую числом неспаренных связанных электронов на валентных электронных подоболочках данных атомов (например, для меди Cu, цинка Zn и железа Fe валентность равна двум [9]). Концентрация N_0 (м⁻³) атомов в металле проводника с его массовой плотностью d_0 (кг/м³) до начала протекания по нему тока проводимости $i_0(t)$ определяется формулой [1]:

$$N_0 = d_0 (M_a \times 1,6606 \times 10^{-27})^{-1}, \qquad (12)$$

где M_a – атомная масса металла проводника, указанная в Периодической системе элементов Менделеева и практически равная массовому числу ядра атома металла проводника, исчисляемому в атомных единицах массы (заметим, что одна атомная единица массы равна примерно 1,6606×10⁻²⁷ кг [9]).

При рассматриваемой верификации остановимся на практическом электрофизическом случае из области ВИТ, когда по круглому сплошному оцинкованному стальному проводу $(r_0 \approx 0.8 \text{ mm}; l_0 \approx 320 \text{ mm}; n_m = 32;$ $n_{em} = 16.82 \times 10^{28}$ м⁻³ [1]), включенному в мощного разрядную цепь высоковольтного генератора импульсных токов (ГИТ) [10], протекает апериодический импульс аксиального тока проводимости $i_0(t)$ временной формы 9 мс/160 мс (I_{0m}) \approx 745 A) при $\delta_{0m} \approx 0.37$ кА/мм² [11]. После подстановки в (4) вышеуказанных исходных данных получаем, что в этом электрофизическом случае усредненная скорость v_{mz} продольного дрейфа коллективизированных свободных электронов в круглом стальном проводе ($r_0 \approx 0.8$ мм; $l_0 \approx 320$ мм) будет численно составлять около 10,5 мм/с. Согласно (11) данная скорость дрейфующих в кристаллической структуре оцинкованного стального провода свободных электронов принимает численное значение, равное примерно $v_{mz} \approx 9.8$ мм/с. Видно, что расхождение между результатами приближенного расчета величины v_{mz} по формулам (4) и (11), полученным соответственно на основе фундаментальных закономерностей квантовой и атомной физики, не превышает 7%. Приведенные нами расчетные данные для величины v_{mz} могут указывать на работоспособность формулы (4).

ВЕРИФИКАЦИЯ РЕЗУЛЬТАТОВ РАСЧЕТА УСРЕДНЕННОЙ ДЛИНЫ λ_{mz} ПРОДОЛЬНЫХ ЭЛЕКТРОННЫХ ВОЛН ДЕ БРОЙЛЯ В ПРОВОДНИКЕ

Эту оценку истинности формулы (10) проведем сравнением результатов расчета усредненной длины $\lambda_{mz}/2$ продольных электронных полуволн де Бройля в вышеуказанном оцинкованном стальном проводе ($r_0 \approx 0.8$ мм; $l_0 \approx 320$ мм; $n_m = 32$; $n_{em} = 16.82 \times 10^{28}$ м⁻³ [1]) с апериодическим импульсом аксиального тока

проводимости $i_0(t)$ вида 9 мс/160 мс ($I_{0m} \approx 745$ A; $\delta_{0m} \approx 0.37 \text{ kA/mm}^2$ [11]) по (10) и экспериментальных данных из области ВИТ, полученных рассматриваемого электрофизического для случая в [12, 13] при опытном исследовании в сильноточной разрядной цепи мощного высоковольтного ГИТ [10] квантованных продольных электронных волн (полуволн) де Бройля и образуемых ими квантованных продольных волновых электронных пакетов (ВЭП) в этом оцинкованном (с толщиной данного тонкого наружного защитного покрытия $\Delta_0 \approx 5$ мкм) стальном цилиндрическом проводе с практически равнораспределением мерным используемого импульсного тока $i_0(t)$ по его поперечному сечению $S_0 \approx 2,01 \text{ мм}^2$.

Следует заметить, что в исследуемом круглом проводе со стальным ($n_m = 32$) достаточно массивным основанием (толщиной $2r_0 \approx 1,6$ мм) и весьма тонким (толщиной $\Delta_0 \approx 5$ мкм) цинковым ($n_m = 32$) покрытием для искомой величины $\lambda_{mz}/2$, определяющей при $n_{0m} \approx n_m/(\ln n_m) \approx 9$ усредненный шаг продольной периодической структуры ВЭП провода, всегда выполняется следующее равенство [2–7]:

$$\lambda_{mz} / 2 = \Delta z_{nh} + \Delta z_{nc}, \qquad (13)$$

где Δz_{nh} , Δz_{nc} — соответственно усредненная длина (ширина) относительно «горячих» и «холодных» продольных участков исследуемого металлического провода (см. рис. 1).

В [7] были приведены квантово-механические соотношения для приближенного расчета усредненной длины «горячего» Δz_{nh} и внутреннего «холодного» Δz_{nc} продольных участков ВЭП рассматриваемого металлического провода с электрическим током проводимости $i_0(t)$ различных АВП:

$$\Delta z_{nh} \approx e_0 n_{em} h(m_e \delta_{0m})^{-1} [8 + (\pi - 2)^2]^{-1}; \qquad (14)$$

$$\Delta z_{nc} \approx l_0 n_{0m}^{-1} - e_0 n_{em} h(m_e \delta_{0m})^{-1} [8 + (\pi - 2)^2]^{-1}.$$
(15)

Для рассматриваемого электрофизического случая с учетом соотношений (14) и (15) при незыблемых мировых постоянных e_0 , h и m_e [1] и указанных исходных данных ($r_0 \approx 0.8$ мм; $l_0 \approx 320 \text{ MM}; \delta_{0m} \approx 0.37 \text{ kA/MM}^2; n_{em} = 16.82 \times 10^{28} \text{ m}^{-3};$ $n_m = 32; n_{0m} \approx 9$) получаем, что $\Delta z_{nh} \approx 5,7$ мм, а $\Delta z_{nc} \approx 28,9$ мм. Тогда согласно (13) расчетное усредненное значение длины $\lambda_{mz}/2$ электронной полуволны де Бройля в исследуемом оцинкованном стальном проводе оказывается равным около 34,6 мм. Важно указать то, что аналогичное расчетное численное значение для $\lambda_{mz}/2 \approx 34.6$ мм следует и из полученной нами формулы (10) при подстановке в нее используемых количественных значений $l_0 \approx 320$ мм и $n_m = 32.$

На рис. 2 представлены экспериментальные результаты интенсивного термического действия мощного апериодического импульса тока проводимости $i_0(t)$ временной формы 9 мс/160 мс с указанными АВП ($I_{0m} \approx 745$ А; $\delta_{0m} \approx 0,37$ кА/мм²) на рассматриваемый оцинкованный стальной провод [12].

Рис. 2. Внешний вид исходного (вверху) оцинкованного стального провода ($r_0 \approx 0.8$ мм; $l_0 \approx 320$ мм; $\Delta_0 \approx 5$ мкм; $S_0 \approx 2,01$ мм²) и его двух остывших на воздухе и теплозащитном асбестовом полотне гантелеобразных элементов (внизу), образовавшихся от прямого термического действия на провод мощного апериодического импульса тока проводимости $i_0(t)$ временной формы вида 9 мс/160 мс большой плотности ($I_{0m} \approx 745$ А; $\delta_{0m} \approx 0,37$ кА/мм²; $n_{0m} \approx 9$). Внизу рисунка изображена масштабная линейка в см [12].

Согласно данным рис. 2 из-за расплавления протекающим в сильноточной разрядной цепи [10] ГИТ импульсом высоковольтного аксиального тока $i_0(t)$ временной формы 9 мс/160 мс с используемыми АВП ($I_{0m} \approx 745$ А; $\delta_{0m} \approx 0.37$ кА/мм²) стального основания исследуемого круглого провода и вскипания его тонкого цинкового покрытия на «горячих» продольных участках ВЭП опытной длиной $\Delta z_{nh} \approx 7$ мм вдоль провода образуется продольная периодическая тепловая макроструктура, содержащая при $n_{0m} \approx 9$ интенсивно нагреваемые гантелеобразные элементы ВЭП (см. рис. 2). Вспученные сферообразные зоны данных гантелеобразных элементов соответствовали «горячим» продольным участкам ВЭП длиной Δz_{nh} , а перегретые и расположенные посередине этих гантелеобразных элементов цилиндрические перешейки - «холодным» продольным участкам ВЭП длиной Δz_{nc} .

При этом в соответствии с экспериментальными данными из [12] температура на их «горячих» продольных участках опытной длиной $\Delta z_{nh} \approx 7$ мм составляла не менее температуры плавления стали (~1535 °C [14]), а на их «холодных» продольных участках опытной длиной $\Delta z_{nc} \approx 27$ мм – не более температуры плавления цинка (~419 °C [14]). Шаг данной продольной тепловой макроструктуры при *n*_{0*m*} ≈ 9 в экспериментальных образцах длиной $l_0 \approx 320$ мм исследуемого оцинкованного стального провода соответствовал соотношению $\lambda_{mz}/2$. Причем опытное значение (13) для величины $\lambda_{mz}/2$ \approx $(\Delta z_{nh} + \Delta z_{nc})$ составляло 34 мм. Из приведенных нами примерно расчетных по формуле (10) ($\lambda_{mz}/2 \approx 34,6$ мм) и

экспериментальных ($\lambda_{mz}/2 \approx 34$ мм) результатов для усредненной длины $\lambda_{mz}/2$ продольных электронных полуволн де Бройля в круглом оцинкованном стальном проводе ($r_0 \approx 0.8$ мм; $l_0 \approx 320$ мм) с апериодическим импульсом аксиального тока проводимости $i_0(t)$ временной 9 мс/160 (I_{0m}) 745 формы мс \approx A; $\delta_{0m} \approx 0.37 \text{ кA/мм}^2$) видно, что расхождение между ними не превышает 2%. Это в полной мере дает нам основание сделать обоснованный вывод о том, что полученная квантово-механическая формула (10) для расчетной оценки усредненных или $\lambda_{mz}/2$ соответственно длин λ_{mz} для продольных электронных волн или полуволн де рассматриваемом металлическом Бройля в проводнике с импульсным аксиальным током проводимости $i_0(t)$ работоспособна.

ЗАКЛЮЧЕНИЕ

1. Получены аналитические соотношения (4), (7) и (10) соответственно для приближенного расчета усредненных значений скоростей v_{mz} продольного дрейфа свободных электронов, круговых частот ω_{mz} изменения продольных электронных волн де Бройля и длин λ_{mz} ($\lambda_{mz}/2$) продольных электронных волн (полуволн) де Бройля в круглом металлическом проводнике конечных размеров (радиусом r_0 и длиной $l_0 >> r_0$) с электрическим током проводимости $i_0(t)$ различных видов и АВП.

2. Результаты выполненной верификации полученных приближенных расчетных квантовомеханических соотношений (4) для усредненных скоростей v_{mz} продольного дрейфа свободных электронов и (10) для усредненных длин λ_{mz} (или $\lambda_{mz}/2$) продольных электронных волн (полуволн) де Бройля в исследуемом металлическом проводнике с принятым током проводимости $i_0(t)$ указывают на их правомерность и работоспособность в области теории и практики электричества.

3. Полученные результаты свидетельствуют о квантово-волновой природе электрического тока проводимости $i_0(t)$ различных видов и АВП в металлическом проводнике и однозначно указывают на существование в его кристаллической микроструктуре квантованных продольных электронных волн (полуволн) де Бройля, описываемых согласно соотношениям (7) и (10) такими макроскопическими усредненными волновыми характеристиками, как круговая частота ω_{mz} и длина λ_{mz} ($\lambda_{mz}/2$).

КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет, что у него нет конфликта интересов.

ЛИТЕРАТУРА

- 1. Кузьмичев, В.Е., *Законы и формулы физики*, Киев: Наукова думка, 1989. 864 с.
- Баранов, М.И., Избранные вопросы электрофизики: Монография в 3-х томах. Том 2, Книга 1: Теория электрофизических эффектов и задач, Харьков: НТУ "ХПІ", 2009. 384 с.
- Baranov, M.I., Wave distribution of free electrons in a current-bearing conductor, *Russ. Electr. Eng.*, 2005, vol. 76, no. 7, p. 30.
- Баранов, М.И., Квантово-волновая природа электрического тока в металлическом проводнике и ее некоторые электрофизические макропроявления, *Електротехніка і електромеханіка*, 2014, № 4, с. 25. doi: 10.20998/2074-272X.2014.4.05.
- 5. Баранов, М.И., Основные характеристики волнового распределения свободных электронов в тонком металлическом проводнике с импульсным током большой плотности, Электричество, 2015, № 10, с. 20.
- 6. Марахтанов, М.К., Марахтанов, А.М., Периодические изменения температуры по длине стальной проволоки, вызванные электрическим током, *Вестн. Моск. госуд. технич. унив. им. Н.Э. Баумана. Серия: Машиностроение*, 2003, № 1, с. 37.
- Baranov, M.I. and Rudakov, S.V., Calculationexperimental determination of middle number of the quantized longitudinal electronic semi waves de Broglie in a cylindrical explorer with an impulsive axial-flow current, *Electrical Engineering & Electromechanics*, 2020, no. 2, p. 43. doi: 10.20998/2074-272X.2020.2.06.
- Роуз, К., Максимальная температура взрыва проволочек в вакууме, В кн.: Электрический взрыв проводников, М.: Мир, 1965. с. 43.
- 9. Яворский, Б.М., Детлаф, А.А., Справочник по физике, М.: Наука, 1990. 624 с.
- 10. Baranov, M.I., Buriakovskyi, S.G. and Rudakov, S.V., The tooling in Ukraine of model tests of objects of energy, aviation and space-rocket technique on

resistibility to action of impulsive current of artificial lightning, *Electrical Engineering & Electromechanics*, 2018, no. 4, p. 45. doi: 10.20998/2074-272X.2018.4.08.

- Baranov, M.I., Local heating of electrical pathways of power electrical equipment under emergency conditions and overcurrents, *Russ. Electr. Eng.*, 2014, vol. 85, no. 6, p. 354. doi: 10.3103/s1068371214060030.
- 12. Баранов, М.И., Особенности нагрева тонкого биметаллического проводника большим импульсным током, Электричество, 2014, № 4, с. 34.
- Baranov, M.I. and Rudakov, S.V., Calculationexperimental method of research in a metallic conductor with the pulse current of electronic wavepackages and de Broglie electronic half-waves, *Electrical Engineering & Electromechanics*, 2016, no. 6, p. 45. doi: 10.20998/2074-272X.2016.6.08.
- 14. Кухлинг, Х., Справочник по физике, М.: Мир, 1982. 520 с.

Summary

The results of an approximate calculation of theaveraged values of speeds of v_{mz} of a longitudinal drift of lone electrons, and of circular frequencies of ω_{mz} change of longitudinal electronic waves de Broglie and of lengths of λ_{mz} of longitudinal electronic waves de Broglie in the metal of round cylindrical conductor with an electric axial-flow current of conductivity of $i_0(t)$ of different kinds (permanent, variable, and impulsive) and amplitude-time parameters (ATP). The results of verification of the obtained calculation correlations for speeds of v_{mz} drift of lone electrons and lengths of λ_{mz} of electronic de Broglie waves in the examined conductor demonstrate their validity and working capacity. The obtained data confirm the quantum-wave nature of the electric current of conductivity of the indicated kinds of $i_0(t)$ and of ATP in a metallic conductor.

Keywords: metallic conductor, electric current of conductivity, drift of lone electrons in a conductor, longitudinal electronic de Broglie waves, average characteristic of drift of electrons