Синтез, фото- и электрокаталитические свойства наноструктурных пленок Y-TiO₂

В. С. Воробец^{а*}, Г. Я. Колбасов^а, И. А. Медик^b, А. Ю. Гаращенко^b, С. В. Карпенко^a, С. Я. Обловатная^a, Н. Г. Антонюк^b

^аИнститут общей и неорганической химии им. В.И. Вернадского НАН Украины, г. Киев-142, 03680, Украина ^bНациональный университет «Киево-Могилянская академия», г. Киев, 04070, Украина, *e-mail: vorobetsvs@i.ua

> Поступила в редакцию 07.08.2020 После доработки 26.10.2020 Принята к публикации 28.10.2020

Синтезированные золь-гель технологией электрокаталитически активные пленки на основе нанодисперсного диоксида титана, модифицированного иттрием, были охарактеризованы методами рентгеновской дифракции (XRD) и спектроскопии фотоэлектрохимического тока. Результаты XRD показали, что TiO₂ и Y-TiO₂ порошки с содержанием Y до 5 мол.%, отожженные при 500 °C, имели кристаллическую структуру анатаза. Электроды на основе пленок Y-TiO₂ были фоточувствительными в диапазоне длин волн 250-400 нм. Во всех исследованных образцах с содержанием Y ≤ 5 мол.% наблюдалось повышение значений квантового выхода фототока и смещение спектральных зависимостей фототока в длинноволновую часть спектра по сравнению с немодифицированным TiO2. Пленки Y-TiO2 отличались повышенной каталитической активностью в процессе электровосстановления кислорода, что проявлялось в уменьшении потенциала электровосстановления кислорода и увеличении динамического диапазона электровосстановления О2 по сравнению с пленками немодифицированного диоксида титана. Повышение электрокаталитической активности наблюдали при концентрации ионов иттрия до 1 мол.%. Установлена корреляция между фото- и электрокаталитическими свойствами и структурными изменениями, происходящими в пленках диоксида титана при модифицировании иттрием.

Ключевые слова: диоксид титана, иттрий, фоточувствительность, электровосстановление кислорода, каталитическая активность

УДК 544.52:546.21 <u>https://doi.org/10.52577/eom.2022.58.1.15</u> <u>ВВЕДЕНИЕ</u>

Диоксид титана благодаря своим физикохимическим свойствам (нетоксичность, светочувствительность, химическая устойчивость, невысокая стоимость) считается одним из самых перспективных полупроводниковых материалов для фотокаталитической очистки окружающей среды от органических загрязнителей, для выработки электроэнергии в солнечных элементах, в защитных покрытиях и т.д. [1–3].

Однако недостатком TiO₂ является короткий срок жизни фотоиндуцированных носителей заряда, который снижает фотокаталитическую активность и ограничивает его широкое применение [4]. Каталитическая активность диоксида титана значительно возрастает при использовании наночастиц, модифицированных редкоземельными элементами [5], В частности Так, модифицирование иттрием. редкоземельными элементами за счет создания кислородных вакансий в запрещенной зоне TiO₂, а формирования примесных также уровней,

которые могут эффективно подавлять рекомбифотогенерированных нацию электроннодырочных пар и улучшать их эффективное использование в процессах переноса заряда, способствует повышению фотокаталитической активности диоксида титана [6]. Радиус У³⁺ (0,089 нм) больше радиуса Ti⁴⁺ (0,068 нм), в результате чего У³⁺ при вхожлении в кристаллическую решетку TiO₂ может приводить к деформации решетки [7] и улучшать его фотокаталитические свойства [8, 9]. Цель данной работы – изучение электрокаталитических и фотоэлектрохимических свойств наноструктурированных пленок TiO₂, модифицированных иттрием.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Нанодисперсный диоксид титана TiO₂ синтезировали золь-гель методом из тетраизопропоксида титана (IV), используя тритон X-100 как порообразующий компонент [10]. Соответствующее количество тритона X-100 растворяли в этаноле (EtOH), после чего к раствору

© Воробец В.С., Колбасов Г.Я., Медик И.А., Гаращенко А.Ю., Карпенко С.В., Обловатная С.Я., Антонюк Н.Г., Электронная обработка материалов, 2022, **58**(1), 15–21.

добавляли уксусную кислоту (АсОН). Далее при интенсивном перемешивании к раствору добавляли прекурсор диоксида титана, тетраизопропоксид титана (TTIP). Мольное соотношение компонентов было X100:EtOH:AcOH:TTIP = 0,5:69:6:1. Для получения TiO₂, модифицированного ионами иттрия Y³⁺ (содержание Y = 0,5; 1; 2; 3 и 5 мол.%), в прекурсор вводили ацетат иттрия. Для получения пленок TiO2 и Y-TiO₂ прозрачный золь наносили на предварительно подготовленные Ті-подложки и отжигали при температуре 500 °C в течение 30 минут. Нанесение золя на токопроводящую подложку проводили методом окунания. Для этого на подготовленную подложку наносили первый слой золя, после чего электрод высушивали на воздухе в сушильном шкафу при температуре 120 °С в течение 10 минут. Описанную процедуру повторяли 10 раз. Электроды с нанесенными слоями на основе золя Y-TiO2 отжигали на воздухе в муфельной печи (СНОЛ 7,2/900) при t = 500 °C в течение 30 минут и охлаждали при комнатной температуре.

Рентгенограммы пленок Y-TiO₂ получали с помощью дифрактометра ДРОН-3М (монохроматическое CuK α -излучение с никелевым фильтром, $\lambda = 1,5418$ Å) при 30 кВ, 20 мА в диапазоне углов 2 $\theta = 10-80^{\circ}$. Для идентификации дифрактограмм использовали базу данных JCPDS. Обработку дифрактограмм проводили с использованием компьютерных программ X-Ray и Match. Размеры кристаллитов (областей когерентного рассеяния) полученных образцов рассчитывали по формуле Шеррера, используя наиболее интенсивный дифракционный пик (101) анатаза.

Фоточувствительность полученных электродов и их фотоэлектрохимические характеристики (спектральную зависимость квантового выхода фототока и потенциал плоских зон) оценивали из значений фототока в диапазоне длин волн 250-600 нм. Фотоэлектрохимические исследования проводились в растворе 1 н KCl в кварцевой электрохимической ячейке с разделенными катодным и анодным пространствами с помощью монохроматора МДР-2 и ксеноновой лампы высокого давления ДКСШ-500. В качестве электрода сравнения использовали электрод Ag/AgCl, в качестве вспомогательного электрода – платиновый.

Электрокаталитическую активность электродов на основе пленок TiO₂ и Y-TiO₂ в процессе электровосстановления кислорода изучали по вольтамперограммам, которые записывали в потенциодинамическом режиме с использованием стенда на базе ПК. Стенд имел следующие характеристики: измеряемые токи

 $2 \times 10^{-9} - 10^{-1}$ А, скорость развертки потенциала 0,01–50 мВ·с⁻¹, диапазон изменения потенциала рабочего электрода -4 – +4 В. Измерения проводили в 0,9% растворе NaCl.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Структура порошков

Рентгенограммы порошков, полученных из прекурсоров пленок TiO₂ и Y-TiO₂ с содержанием иттрия от 0,5 до 5 мол.% после прокаливания при 500 °C, представлены на рис. 1. Тщательный анализ показал, что все рефлексы на рентгенограммах образцов как исходного TiO₂, так и TiO₂, модифицированного иттрием, характерны для кристаллической фазы TiO2 анатаза (JCPDS, №21-1272). Никаких пиков, связанных с рутилом или другой фазой диоксида титана, на рентгенограммах образцов не обнаружено. Дифракционные пики при 25,3°, 37,8°, 48,0°, 53,9°, 55,0° и 62,7° идентифицируются как (101), (104), (200), (105), (211) и (204) рефлексы кристаллической фазы анатаза.

Рис. 1. Рентгенограммы порошков, полученных при температуре 500 °С из прекурсоров пленок с содержанием иттрия, мол.%: l - 0; 2 - 0,5; 3 - 1; 4 - 2; 5 - 3; 6 - 5.

Из литературных данных известно, что иттрий может находиться в аморфном состоянии в виде кристаллов фазы Y_2O_3 , а также возможно внедрение ионов иттрия в кристаллическую решетку анатаза [7]. Дифракционные пики, соответствующие кристаллической фазе Y_2O_3 (карта Y_2O_3 : JCPDS № 86-1326), в образцах Y-TiO₂ не наблюдаются (рис. 1). Это можно объяснить тем, что некоторые ионы Ti^{4+} были замещены ионами Y^{3+} в решетке анатаза или содержание Y_2O_3 было слишком маленьким для его обнаружения с помощью метода рентгеновской дифракции (XRD).

Видно, что при увеличении содержания Y характерные пики анатаза становятся шире, а интенсивность их уменьшается (рис. 1). Авторы [9] показали, что Y³⁺ может проникать в

Состав	20,°	D, нм	Параметры решетки		
			$a(\text{\AA})$	$c(\text{\AA})$	$V(Å^3)$
TiO ₂	25,35	14,4	3,7911	9,4869	136,3499
0,5%Y-TiO ₂	25,34	12,4	3,7893	9,4981	136,3813
1%Y-TiO ₂	25,33	12,1	3,7886	9,5176	136,6108
2%Y-TiO ₂	25,31	11,9	3,7898	9,5285	136,8539
3%Y-TiO ₂	25,33	11,2	3,7873	9,5089	136,3923
5%Y-TiO ₂	25,30	10,0	3,7871	9,5086	136,3735

Таблица 1. Структурные свойства исследованных материалов, определенные с помощью XRD

кристаллическую решетку TiO₂ и замещать часть Ti⁴⁺, вызывая деформацию решетки, при этом возникающее микронапряжение приводит к снижению кристалличности и интенсивности дифракции. Кроме этого, расширение дифракционных пиков может быть связано с уменьшением размера зерна [11].

Проведен расчет размеров кристаллитов в пленках Y-TiO₂ с различным содержанием Y. Средний размер кристаллитов определяли по расширению наиболее интенсивного пика (101) по уравнению Шеррера:

$$d=\frac{k\lambda}{\beta\cos\theta},$$

где d – средний размер кристаллитов; k – константа (k = 0,9); β – полуширина пика; λ и θ – длина волны и угол отражения рентгеновского излучения соответственно. Полуширину дифракционного пика (101) β определяли как полуширину подгоночной функции Гаусса, которая хорошо описывала профиль пика. Рассчитанные по указанной методике размеры частиц для образцов TiO₂ и Y-TiO₂ с содержанием Y = 0,5; 1; 2; 3; 5 мол.% приведены в табл. 1. Влияние содержания Y на размер кристаллитов (D) анатаза TiO₂ дано в табл. 1.

Как следует из табл. 1, средний размер кристаллитов TiO₂ и TiO₂, модифицированного Y (с содержанием иттрия 0,5; 1; 2; 3; 5 мол.%,), отожженного при 500 °C, уменьшается при повышении содержания иттрия, что свидетельствует о том, что модифицирование TiO₂ иттрием ингибирует рост частиц TiO₂ (табл. 1) и может быть связано с наличием связей У-О-Ті, препятствующих росту кристаллических зерен. Эти данные подтверждаются результатами, полученными в работе [5] для систем RE-TiO₂ $(RE = La^{3+}, Ce^{3+}, Er^{3+}, Pr^{3+}, Gd^{3+} Nd^{3+}, Sm^{3+}), B$ которой уменьшение размера частиц TiO₂ объясняется присутствием связей RE-O-Ti в легированных образцах, тормозящих рост кристаллических зерен.

В образцах Y–TiO₂ с содержанием Y 2 мол.%, отожженных при температуре 500 °C, кроме расширения характерных пиков анатаза, наблюдалось их смещение в сторону меньших углов 20 (табл. 1). Это указывает на то, что ионы иттрия внедряются в кристаллическую решетку анатаза [7, 9], несмотря на разницу в значениях ионных радиусов титана и иттрия. Рассчитанные с помощью программы X-Ray значения параметров решетки a и c, а также ее объем Vвозрастают с увеличением содержания иттрия в образцах до 2% (табл. 1), что также указывает на возможность внедрения иона Y³⁺ в решетку анатаза [5]. Хотя в некоторых случаях вопрос внедрения Y³⁺ в решетку TiO₂ является дискуссионным [11]. При этом объем наночастиц TiO₂ быть может насыщен относительно небольшим количеством У вследствие разницы в радиусах ионов Ti⁴⁺ и Y³⁺, другая часть находится на поверхности В аморфном состоянии.

В нашем случае увеличение содержания иттрия (от 0,5 до 2 мол.%) в TiO_2 также приводило к расширению объема *V* кристаллической решетки анатаза (табл. 1). Увеличение объема решетки анатаза для образцов с содержанием Y до 2 мол.% также соответствует тому, что происходит внедрение ионов Y^{3+} в решетку анатаза.

Таким образом, порошки, полученные из прекурсоров пленок $Y\text{-}TiO_2$ с содержанием ионов $Y\leq 2$ мол.% и отожженные при 500 °C, имеют кристаллическую структуру анатаза, в которой часть ионов Ti^{4+} замещена ионами $Y^{3+}.$ При содержании ионов Y>2мол.% увеличивается содержание аморфной фазы.

Электрокаталитические свойства пленок

Электрокаталитические свойства полученных пленок диоксида титана, модифицированного иттрием, изучали в процессе электровосстановления кислорода. Этот процесс лежит в основе работы электрохимических сенсоров кислорода, предназначенных для определения концентрации O₂ в жидких средах [12].

На поляризационных кривых электродов на основе пленок Y-TiO₂ наблюдали одну полярографическую волну тока при потенциалах 0,5 - -1,0 В (относительно хлор-серебряного электрода сравнения) с предельным током, соответствующим току восстановления кислорода (рис. 2). При потенциалах E < -1,0 В на

Рис. 2. Поляризационные кривые электровосстановления кислорода на Y-TiO₂-электродах: I - 5% Y; 2 - 1% Y. Скорость развертки потенциала 10 мВ·с⁻¹; I – плотность тока (мА·см⁻²); E – потенциал (В) относительно Ag/AgCl электрода, электролит – 0,9% NaCl.

Таблица 2. Значение потенциала полуволны тока восстановления кислорода $E_{1/2}$, ширины «электрохимического окна» ΔE и ширины запрещенной зоны E_g электродов Y-TiO₂ в зависимости от содержания иттрия

N₂	Состав	$E_{1/2}, \mathbf{B}$	$\Delta E, B$	E_g , эВ
1.	TiO ₂	-0,70	0,10	3,00
2.	0,5% Y-TiO ₂	-0,62	0,18	3,05
3.	1% Y-TiO ₂	-0,55	0,24	3,00
4.	2% Y-TiO ₂	-0,60	0,20	2,95
5.	3% Y-TiO ₂	-0,63	0,20	2,95
6.	5% Y-TiO ₂	-0,65	0,16	3,00

электродах протекала реакция выделения водорода [13].

Важными характеристиками электродов для анализа концентрации растворенного кислорода является потенциал восстановления кислорода, или потенциал полуволны тока восстановления $E_{1/2}$, а также ширина «электрохимического окна» ΔE (динамическая область потенциалов, в которой можно анализировать содержание кислорода в растворе). Значение $E_{1/2}$ должно быть минимальным для исключения возможных электрохимических побочных реакций, а значение ΔE – максимальным для достижения высокой чувствительности электрода и точности измерений. Из рис. 2 следует, что в физиологирастворе NaCl значение ческом $E_{1/2}$ на электродах с содержанием иттрия 1% равно – 0,58 B (относительно Ag/AgCl электрода сравнения) И является минимальным для электродов Y-TiO₂. Динамический диапазон потенциалов восстановления O_2 на этих электродах составил 0,30 В. Значения $E_{1/2}$ и ΔE для других электродов представлены в табл. 2.

Из табл. 2 следует, что модифицирование пленок TiO₂ иттрием повышает каталитическую активность электродов на их основе в реакции электровосстановления кислорода по сравнению с немодифицированным TiO₂, что проявляется в уменьшении потенциала полуволны восстановления кислорода и увеличении динамического диапазона электровосстановления O2. Максиэлектрокаталитическую мальную активность проявляли электроды с содержанием иттрия, равным 1% ($E_{1/2} = -0,58$ B, $\Delta E = 0,30$ B). При более высоком содержании иттрия в пленках (> 1%) электрокаталитическая активность электродов уменьшалась (табл. 2). Это может быть связано с влиянием неактивной аморфной фазы, благодаря которой уменьшается концентрация каталитически активных центров на поверхности Y-TiO2электродов.

Из измерений электрохимического шума видно, что чувствительность изученных Y-TiO2электродов кислороду составляла к (4-6)×10⁻⁶ г·л⁻¹, что близко к чувствительности Рt-электродов, применяемых в электрохимических сенсорах кислорода, но в то же время стабильность электродов на основе Y-TiO2пленок выше, чем Pt-электродов. При многократном циклировании потенциала поляризационные характеристики Y-TiO2-электродов практически не изменялись уже после третьего цикла, что свидетельствует о высокой стабильности полученных электродов и возможности их

Рис. 3. Спектральные зависимости квантового выхода фототока пленок TiO₂ и Y-TiO₂ с содержанием иттрия, мол.%: 1 - 0; 2 - 1; 3 - 2; 4 - 3; 5 - 5; η – квантовый выход фототока (y.e.); hv – энергия квантов света (эВ); электролит – 1M KCl.

Рис. 4. Зависимость потенциала плоских зон для пленок модифицированного иттрием диоксида титана от содержания иттрия. $E_{\rm n3}$ – потенциал плоских зон (В).

использования для определения концентрации растворенного кислорода.

Таким образом, электроды на основе Y–TiO₂ пленок отличаются высокой электрокаталитической активностью и стабильностью в процессе электровосстановления кислорода и перспективны для использования в электрохимических сенсорах кислорода.

Фотоэлектрохимические свойства пленок Y-TiO₂

Установлено, что исследованные электроды на основе пленок Y-TiO₂ (рис. 3) были фоточувствительными в диапазоне длин волн 250–400 нм, а величина квантового выхода фототока η существенно зависела от содержания Y (рис. 3).

Из спектральных зависимостей квантового выхода фотоэлектрохимического тока (η) электродов на основе полученных пленок TiO₂ и Y-TiO₂ (рис. 3) определены потенциал плоских зон $E_{\pi 3}$ и ширина запрещенной зоны E_g для непрямых фотопереходов в запрещенной зоне TiO₂. Значение потенциала плоских зон $E_{\pi 3}$ определяли из зависимостей фототока I от потенциала *E* экстраполяцией прямолинейных участков этих зависимостей до пересечения с осью абсцисс [13].

Значение Епз позволяет оценить изменение положения дна зоны проводимости полученных электродов и энергию электронов, при участии которых протекают процессы восстановления, в том числе процесс электровосстановления кислорода [13]. Для определения ширины запрещенной зоны Е_g спектральные зависимости квантового выхода фотоэлектрохимического перестраивались тока координатах В $(hv \times \eta)^{0,5} \sim hv$ для непрямых разрешенных переходов в TiO2, где η – квантовый выход, hv – энергия квантов света. Далее экстраполяцией прямолинейных участков полученных кривых до пересечения с осью абсцисс в длинноволновой части спектра определяли значения ширины запрещенной зоны E_g [13], которые представлены в табл. 2. Величина квантового выхода для образцов TiO₂ и Y-TiO₂ составляла $(\eta) = 0.35 - 0.98$ y.e. (рис. 5).

Рис. 5. Зависимость квантового выхода фототока (у.е.) для пленок диоксида титана от содержания иттрия (мол.%).

Следует отметить, что для всех образцов TiO₂, модифицированных иттрием, по сравнению с немодифицированным TiO₂, наблюдается существенное повышение их фоточувствительности, проявляется В увеличении значений что фотоэлектрохимического квантового выхода тока η (рис. 3, 5) и смещении спектральных зависимостей в длинноволновую часть спектра (рис. 3). Видно, что величина квантового выхода для образцов Y-TiO2 сначала росла, а затем уменьшалась с увеличением содержания У и была максимальной для пленок 2% Y-TiO₂ в результате уменьшения скорости рекомбинации электронно-дырочных пар. В то же время модифицирование иттрием может приводить к образованию электронных примесных уровней в TiO₂, в результате чего сужение ширины запрещенной зоны TiO₂ И смещение полос поглощения в длинноволновую часть спектра способно вызвать стимулирование электронных переходов, то есть улучшить таким образом спектральную фотокаталитическую активность. Но в нашем случае величина квантового выхода фототока электродов Y-TiO2 уменьшилась при дальнейшем росте содержания иттрия. При этом ширина запрещенной зоны Eg исследованных электродов существенно не менялась (табл. 2). Учитывая это обстоятельство, можно считать, что модифицирование TiO₂ ионами Y более 2% приводит к образованию рекомбинационных центров в запрещенной зоне ТіО₂, активность которых может увеличиваться при образовании аморфной фазы. Объяснение того, почему значение ширины запрещенной зоны Е_g не изменяется при различном содержании Y, заключается в ее обычно значительно меньшей чувствительности по отношению к прогрессирующим структурным изменениям [10].

Таким образом, наблюдается определенная взаимосвязь между фото- и электрокаталитическими свойствами и структурными изменениями, происходящими в пленках диоксида титана при модифицировании иттрием, то есть изменение фотоэлектрохимических характеристик (увеличение квантового выхода фототока) и электрокаталитических свойств (уменьшение потенциала электровосстановления кислорода) при увеличении содержания иттрия в основном похожи.

выводы

Золь-гель методом синтезированы порошки и пленки TiO_2 , модифицированного ионами Y^{3+} . Порошки Y-TiO₂ с содержанием иттрия 0,5–5 мол.% ($T_{\text{отж}} = 500$ °C) имели кристаллическую структуру анатаза с размером кристаллитов 10–12 нм.

Пленки Y-TiO₂ отличались повышенной каталитической активностью В процессе электровосстановления кислорода, что проявлялось в уменьшении потенциала электровосстановления кислорода и увеличении динамического диапазона электровосстановления О2 по сравнению с пленками немодифицированного диоксида титана. Повышение электрокаталитической активности наблюдали для концентраций ионов иттрия до 1%; дальнейшее повышение содержания модифицирующих ионов приводило к снижению активности образцов, вероятно, вследствие образования аморфной фазы. Y-TiO₂-электроды проявляли стабильность и воспроизводимость характеристик в процессе электровосстановления О2 и перспективны при использования в электрохимических сенсорах для определения О₂ в жидкостях.

Электроды на основе пленок Y-TiO₂ были фоточувствительными в диапазоне длин волн 250-400 нм. Для всех исследованных образцов с содержанием Υ \leq 5 мол.% наблюдалось повышение значений квантового выхода фототока и смещение спектральных зависимостей фототока в длинноволновую часть спектра по сравнению с немодифицированным TiO2. Величина квантового выхода фототока для образцов Y-TiO₂ сначала росла, а затем уменьшалась с увеличением содержания Ү, что связано со структурными изменениями, и была максимальной для пленок 2% Y-TiO₂. Установлена корреляция между фото- и электрокаталитическими свойствами и структурными изменениями, происходящими в пленках диоксида титана при модифицировании иттрием.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ЛИТЕРАТУРА

- 1. Le Boulbar, E., Millon, E., Boulmer-Leborgne, C., Cachoncinlle, C., et al., Optical properties of rare earth-doped TiO₂ anatase and rutile thin films grown by pulsed-laser deposition, *Thin Solid Films*, 2014, vol. 553, no. 2, p. 13.
- Šćepanović, M., Abramović, B., Golubović, A., Kler S., et al., Photocatalytic degradation of metoprolol in water suspension of TiO₂ nanopowders prepared using sol–gel route, *J. Sol-Gel Sci. Techn.*, 2011, vol. 61, no. 2, p. 390.
- Fox, M.A. and Duly, M.T., Acceleration of secondary dark reactions of intermediates derived from adsorbed dyes on irradiated TiO₂ powders, *J. Photochem. Photobiol. A Chem.*, 1996, vol. 98, p. 91.
- Hamden, Z., Ferreira, D.P., Vieira Ferreira L.F. and Bouattour, S., Li–Y doped and codoped TiO₂ thin films: enhancement of photocatalytic activity under visible light irradiation, *Ceram. Int.*, 2014, vol. 40, no. 2, p. 3227.
- Stengl, V., Bakardjieva, S. and Murafa, N., Preparation and photocatalytic activity of rare earth doped TiO₂ nanoparticles, *Mater. Chem. Phys.*, 2009, vol. 114, p. 217.
- 6. Ma, Y.-T. and Li, S.-D., Photocatalytic activity of TiO₂ nanofibers with doped La prepared by electrospinning method, *J. Chin. Chem. Soc.*, 2015, vol. 62, no. 4, p. 380.
- Rao, J., Xue, H., Zhang, W., Li, X., et al., Synthesis of yttrium doped TiO₂ nanotubes by a microwave refluxing method and their photoluminescence properties and photocatalytic properties, *Int. J. Electrochem. Sci.*, 2016, vol. 11, p. 2408.
- Khan, M. and Cao, W., Preparation of Y-doped TiO₂ by hydrothermal method and investigation of its visible light photocatalytic activity by the degradation of methylene blue, *J. Mol. Catal. A-Chem.*, 2013, vol. 376, p. 71.

- Zhang, W., Wang, K., Zhu, S., Li, Y., et al., Yttriumdoped TiO₂ films prepared by means of DC reactive magnetron sputtering, *Int. J. Chem. Eng.*, 2009, vol. 155, no. 1–2, p. 83.
- Stathatos, E., Lianos, P. and Tsakiroglou, C., Highly efficient nanocrystalline titania films made from organic/inorganic nanocomposite gels, *Micropor. Mesopor. Mat.*, 2004, vol. 75, p. 255.
- Kallel, W. and Bouattour, S., Y-Dy doped and co-doped TiO₂. Enhancement of photocatalytic activity under visible light irradiation, *Physicochem. Probl. Miner. Process*, 2017, vol. 53, no. 1, p. 427.
- Колбасов, Г.Я., Воробец, В.С., Блинкова, Л.В., Сенсор для измерения концентрации кислорода в малых объемах биологических жидкостей, *Сенсорная электроника и микросистемные технологии*, 2011, т. 8, № 2, с. 52.
- Kolbasov, G.Ya., Vorobets, V.S., Korduban, A.M., Shpak, A.P., et al., Electrodes based on nanodispersed titanium and tungsten oxides for a sensor of dissolved oxygen, *Russ. J. Appl. Chem.*, 2006, vol. 79, no. 4, p. 596.

Summary

The electrocatalytically active films based on nanodispersed titanium dioxide modified by Y3+ ions and synthesized by the sol-gel method were characterized by the X-ray diffraction (XRD) and ultraviolet-visible photocurrent spectra. Electrocatalytic properties of the TiO2 and Y-TiO₂ electrodes were investigated during the process of oxygen electro-reduction. The XRD results indicated that the TiO₂ and Y-TiO₂ powders with the yttrium content of 0.5-5 mol% calcined at 500 °C had an anatase crystal structure, with the crystallite size of 10-12 nm. The electrodes based on the Y-TiO₂ films were photosensitive in a wavelength range of 250-400 nm. For all investigated samples with the Y (III) content of \leq 5 mol%, both an increase in the photocurrent quantum yield and a shift of spectra towards longer wavelengths vs. those of the undoped TiO₂ were observed. The photocurrent quantum yield for the Y-TiO₂ samples first increased and then decreased with increasing the Y (III) content, and reached its maximum with 2% Y-TiO₂ films. It was found that doping of the TiO₂ films by Y (III) improves the catalytic activity of the Y-TiO₂ electrodes in the reaction of oxygen electroreduction. A correlation between photo- and electrocatalytic properties and structural changes occurring in the TiO2 films upon yttrium doping has been revealed.

Keywords: titanium dioxide, yttrium, photosensitivity, electroreduction of oxygen, catalytic