Расчет максимального числа зон продольной периодической локализации дрейфующих электронов в металлическом проводнике с электрическим током проводимости

М. И. Баранов

Научно-исследовательский и проектно-конструкторский институт «Молния» Национального технического университета «Харьковский политехнический институт», г. Харьков, 61013, Украина, e-mail: <u>baranovmi@kpi.kharkov.ua</u>

> Поступила в редакцию 28.12.2020 После доработки 25.01.2021 Принята к публикации 26.01.2021

Приведены результаты приближенного расчета максимального значения квантового числа $n = n_m$ для квантованных стоячих продольных электронных полуволн де Бройля длиной $\lambda_{ezn}/2 = l_0/n$ и соответственно максимального числа n_m квантованных зон продольной периодической локализации длиной Δz_{nh} дрейфующих свободных электронов в цилиндрических проводниках конечных размеров (длиной l_0 и радиусом r_0) с аксиальным током проводимости $i_0(t)$ указанных видов и амплитудно-временных параметров (АВП). При этом учитывались квантово-волновая природа электрического тока проводимости $i_0(t)$ различных видов (постоянного и импульсного) и АВП в металлических проводниках. Результаты верификации полученного расчетного квантово-механического соотношения для определения квантового числа n_m указывают на его правомерность (работоспособность) в таких прикладных областях инженерии, как высоковольтная сильноточная импульсная техника и электрофизическая обработка металлов сильным электромагнитным полем и давлением большого импульсного тока.

Ключевые слова: металлический проводник, электрический ток проводимости, квантованные продольные электронные волны де Бройля, квантованные зоны продольной локализации дрейфующих электронов в проводнике

УДК 621.3.01:621.313 https://doi.org/10.52577/eom.2021.57.4.43

СОСТОЯНИЕ И АКТУАЛЬНОСТЬ ПРОБЛЕМЫ

Электрический ток проводимости $i_0(t)$ различных видов, включая постоянный, переменный и импульсный, и амплитудно-временных параметров (АВП) в металлических проводниках тех или иных конструкций (исполнений), как известно, имеет квантово-волновую природу [1-3]. В этой связи поведение в пространстве и во времени t дрейфующих под действием приложенного к противоположным краям таких проводников электрического напряжения $u_0(t)$ коллективизированных свободных электронов в их кристаллических структурах подчиняется некоторым квантованным (дискретным) волновым ψ_n -функциям Шредингера, характеризующимся собственными целыми числами *n* = 1,2,3..., получившими в квантовой физике (волновой механике) название квантовых чисел [4]. При этом конечное максимальное значение квантового числа *n* в общем случае оказывается равным n_m. При практических расчетах дрейфа свободных электронов в рассматриваемых проводниках с электрическим током проводимости $i_0(t)$ различных АВП указанное значение квантового числа n_m подлежит отдельному определению. Продольные

квантованные волновые $\psi_{nz}(z,t)$ -функции Шредингера применительно к цилиндрическому проводнику с продольной осью ОZ и аксиальным током $i_0(t)$ произвольных АВП носят гармонический характер и приводят к возникновению в его микро- и макроструктурах квантованных стоячих продольных электронных волн де Бройля длиной λ_{ezn} , описывающих в таком проводнике движение вдоль координаты z указанных электронов [2]. Ранее было установлено, что вдоль металлического проводника длиной l_0 с током $i_0(t)$ всегда размещается только целое число *п* квантованных стоячих полуволн де Бройля длиной $\lambda_{ezn}/2$, удовлетворяющих соотношению [1]: $n\lambda_{ezn}/2 = l_0$. Минимальное значение величины $\lambda_{ezn}/2$ как раз и будет определяться максимальным значением квантового числа *n*, то есть *n_m*. Кроме того, этим квантовым числом n_m будет определяться и максимальное число продольных волновых электронных пакетов (ВЭП), периодически возникающих вдоль длины *l*₀ проводника с электрическим током $i_0(t)$ и каждый из которых относительно содержит один «горячий» продольный участок длиной Δz_{nh} и один относительно «холодный» продольный участок длиной Δz_{nc} [2, 5]. Причем для каждого ВЭП

проводника с током $i_0(t)$ различных видов и АВП будет всегда выполняться равенство [2]:

$$\lambda_{ezn}/2 = (\Delta z_{nh} + \Delta z_{nc}).$$

В [1-3] были изложены элементы теории продольной периодической локализации дрейфующих свободных электронов в цилиндрическом проводнике с электрическим аксиальным током $i_0(t)$ различных видов и АВП. Характерной особенностью такой локализации дрейфующих вдоль проводника электронов является то, что значения их усредненной объемной плотности *n_{eh}* на «горячих» продольных участках в предельном случае при $n \rightarrow n_m$ будут сущест-(максимум в 3,5 раза) венно превышать значения усредненной объемной плотности n_{ec} дрейфующих электронов на «холодных» продольных участках того же проводника [1–3].

Выполнение неравенства вида $n_{eh}/n_{ec} > 1$ будет приводить к тому, что удельная мощность тепловых (джоулевых) потерь на «горячих» продольных участках проводника будет значительно превышать удельную мощность подобных потерь на его «холодных» продольных участках. А раз так, то и температура нагрева током *i*₀(*t*) его «горячих» продольных участков будет существенно больше температуры соответствующего нагрева «холодных» продольных участков проводника. Особенно явно (резко) это отличие в температурах джоулева нагрева для «горячих» и «холодных» продольных участков проводников будет проявляться в аварийных режимах работы кабельнопроводниковой продукции (КПП) силовых электрических цепей энергообъектов (например, при коротком замыкании (КЗ) или больших токовых перегрузках в них) [6] и штатных режимах работы токонесущей цилиндрической ошиновки мощных высоковольтных генераторов импульсных токов (ГИТ) [7], когда амплитуда плотности δ_{0m} тока в поперечных сечениях станет принимать проводников численное значение порядка 0,1 кА/мм² И более. В указанных режимах работы КПП ее «горячие» продольные участки будут перегреваться и выходить из строя [8]. При этом температура нагрева медных жил КПП для их «горячих» продольных участков (при $\delta_{0m} \approx 0,4$ кА/мм² длиной (шириной) около $\Delta z_{nh} \approx 5,3$ мм [2]) может превышать температуру плавления Т_т меди Си $(T_m \approx 1083 \ ^{\circ}C \ [9])$ и вызывать воспламенение поясной (защитной) изоляции КПП, что чревато возникновением пожара как на энергетическом объекте, так и в сети потребителя электроэнергии.

Опытные данные, приведенные на рис. 1 для оцинкованного стального провода радиусом

 $r_0 = 0.8$ мм и длиной $l_0 = 320$ мм (при толщине его цинкового покрытия $\Delta_0 = 5$ мкм), включенного в разрядную цепь мощного высоковольтного ГИТ с апериодическим импульсом аксиального тока *i*₀(*t*) временной формы 9 мс/160 мс при $\delta_{0m} \approx 0,37 \text{ кA/мм}^2$ и n = 1 [7], как раз наглядно и демонстрируют такую возможность наступления локального расплавления токонесущей части КПП посередине этого стального провода на его единственном «горячем» продольном участке длиной (шириной) $\Delta z_{nh} \approx 7$ мм. На практике при эксплуатации разнообразной КПП требуется знать локальные зоны перегрева ее токонесущих частей в аварийных (например, при сетевых КЗ) и штатных (например, в цепях мощных ГИТ) режимах ее работы и прогнозировать как их число, так и места их возможного появления вдоль используемой в силовых цепях КПП.

Рис. 1. Опытная демонстрация локального расплавления оцинкованного стального провода ($r_0 = 0.8$ мм; $l_0 = 320$ мм; $\Delta_0 = 5$ мкм) разрядным импульсом аксиального тока $i_0(t)$ временной формы 9 мс/160 мс от мощного ГИТ ($\delta_{0m} \approx 0.37$ кА/мм²) в зоне его единственного (n = 1) «горячего» продольного участка длиной $\Delta z_{nh} \approx 7$ мм, остывающего на воздухе и огнестойком асбестовом полотне [8].

Заметим, что температура нагрева на единственном (n = 1) «горячем» продольном участке используемого в указанном эксперименте оголенного (без изоляции) биметаллического провода (см. рис. 1) составляла не менее температуры плавления его стального основания (~ 1535 °С [10]), а температура нагрева на его двух «холодных» продольных участках длиной *∆z*_{*nc*} ≈ 156,5 мм с закрепленными на болтовых соединениях краями не превышала температуру плавления его цинкового покрытия (~ 419 °C [10]). В этой связи в области как электроэнергетики, силовой электротехники и высоковольтной импульсной техники, так и электрофизической обработки металлов большими импульсными токами необходимо уметь количественно определять максимальное значение квантового числа $n = n_m$ для продольных квантованных полуволн де Бройля длиной $\lambda_{ezn}/2 = l_0/n$ и соответственно максимального числа *n_m* квантованных зон продольной периодической локализации длиной Δz_{nh} дрейфующих электронов в цилиндрических проводниках с электрическим током $i_0(t)$ различных видов и АВП.

Цель статьи – расчетное определение максимального значения квантового числа $n = n_m$ продольных электронных полуволн де Бройля длиной $\lambda_{ezn}/2 = l_0/n$ и соответственно максимального числа n_m квантованных зон продольной периодической локализации длиной Δz_{nh} дрейфующих свободных электронов в металле цилиндрического проводника с электрическим аксиальным током $i_0(t)$ различных видов и АВП.

ПОСТАНОВКА ЗАДАЧИ

Рассмотрим уединенный сплошной прямолинейный круглый цилиндрический проводник радиусом r_0 и длиной $l_0 >> r_0$ (рис. 2), по которому в его продольном направлении протекает аксиальный электрический ток проводимости $i_0(t)$ произвольных АВП. Пусть геометрические размеры проводника и АВП электрического тока $i_0(t)$ допускают его практически равномерное распределение по поперечному сечению S₀ рассматриваемого проводника. Считаем, что продольное распределение дрейфующих коллективизированных электронов свободных проводнике полчиняется одномерным (продольным) квантованным волновым $\psi_{nz}(z,t)$ -функциям Шредингера [4].

Рис. 2. Общий вид круглого цилиндрического проводника длиной l_0 и радиусом r_0 с аксиальным током проводимости $i_0(t)$, где Δz_{nh} , Δz_{nc} – соответственно длины (ширины) «горячего» и «холодного» продольных участков проводника [2].

С учетом квантово-механического подхода к продольному распределению дрейфующих свободных электронов в кристаллической структуре исследуемого проводника расчетным путем требуется определить в принятом приближении максимальное значение квантового числа $n = n_m$ для продольных электронных полуволн де Бройля длиной $\lambda_{ezn}/2 = l_0/n$ и соответственно максимальное число n_m квантованных зон продольной периодической локализации длиной Δz_{nh} указанных электронов в круглом цилиндрическом проводнике с аксиальным током $i_0(t)$ различных видов и АВП.

ОСНОВНЫЕ РАСЧЕТНЫЕ СООТНОШЕНИЯ

Запишем для рассматриваемого металлического проводника с дрейфующими в нем свободными электронами закон сохранения его элементарных носителей электричества в следующем виде:

$$n_{eh}\Delta z_{nh}S_0n_m + n_{ec}\Delta z_{nc}S_0n_m \approx n_{em}l_0S_0, \qquad (1)$$

где n_{em} — усредненная объемная плотность свободных электронов в металле проводника до протекания по нему аксиального тока проводимости $i_0(t)$.

Как известно, величина n_{em} равна концентрации N_0 атомов металла проводника, умноженной на его валентность, определяемую числом неспаренных связанных электронов на валентных электронных подоболочках данных атомов (например, для меди Сu, цинка Zn и железа Fe валентность равна двум [4, 10]). Концентрация N_0 (м⁻³) атомов в металле проводника с его массовой плотностью d_0 (кг/м³) до начала протекания по нему тока $i_0(t)$ определяется известной формулой [4]:

$$N_0 = d_0 (M_a \times 1,6606 \times 10^{-27})^{-1}, \qquad (2)$$

где M_a – атомная масса металла проводника, указанная в периодической системе химических элементов Менделеева и практически равная массовому числу ядра атома металла проводника, исчисляемому в атомных единицах массы (одна атомная единица массы равна примерно 1,6606×10⁻²⁷ кг [10]).

Объемные плотности дрейфующих под действием приложенного напряжения $u_0(t)$ к проводнику с током $i_0(t)$ электронов на его «горячих» n_{eh} и «холодных» n_{ec} продольных участках могут быть при $n \rightarrow n_m$ рассчитаны по следующим приближенным аналитическим соотношениям [2]:

$$n_{eh} \approx 4\pi n_{em} [8 + (\pi - 2)^2]^{-1};$$
 (3)

$$n_{ec} \approx \pi (\pi - 2) n_{em} [8 + (\pi - 2)^2]^{-1}.$$
 (4)

Что касается длины Δz_{nh} «горячего» продольного участка рассматриваемого проводника с током $i_0(t)$, то она определяется приближенным соотношением вида [2]:

$$\Delta z_{nh} \approx e_0 n_{em} h(m_e \delta_{0m})^{-1} [8 + (\pi - 2)^2]^{-1}, \qquad (5)$$

где $e_0 = 1,602 \times 10^{-19}$ Кл – модуль электрического заряда электрона [4]; $h = 6,626 \times 10^{-34}$ Дж·с – постоянная Планка [4]; $m_e = 9,109 \times 10^{-31}$ кг – масса покоя электрона [4]; $\delta_{0m} \approx I_{0m}/S_0$ – амплитуда плотности электрического тока в материале проводника; I_{0m} – амплитуда электрического тока проводимости $i_0(t)$.

Для длины Δz_{nc} внутреннего «холодного» продольного участка рассматриваемого проводника с электрическим током проводимости $i_0(t)$ имеем [2]:

$$\Delta z_{nc} \approx l_0 n_m^{-1} - e_0 n_{em} h(m_e \delta_{0m})^{-1} [8 + (\pi - 2)^2]^{-1}.$$
 (6)

После подстановки (3)–(6) в (1) и элементарных преобразований для максимального значения квантового числа $n = n_m$ продольных электронных полуволн де Бройля длиной $\lambda_{ezn}/2 = l_0/n$ и максимального числа n_m квантованных зон продольной периодической локализации длиной (шириной) Δz_{nh} в исследуемом проводнике получаем:

$$n_m \approx m_e \delta_{0m} l_0 (e_0 n_{em} h)^{-1} K_0,$$
 (7)

где $K_0 = \{[8+(\pi-2)^2]^2 - \pi(\pi-2)[8+(\pi-2)^2]\} \times [\pi(6-\pi)]^{-1}$ – коэффициент, численно равный примерно 5,922.

Из анализа расчетного соотношения (7) и результатов квантово-механических расчетов продольного волнового распределения дрейфующих свободных электронов в цилиндрическом с электрическим током проводнике $i_0(t)$ различных видов и АВП, приведенных в [1-3], следует, что для обеспечения меньшей расчетной погрешности выбор квантового числа n_m по (7) необходимо выполнять для тех случаев, когда значения длины l₀ проводника по электротехнологическим условиям его работы в электрической цепи и длины $\lambda_{ezn}/2$ в нем продольных квантованных электронных полуволн де Бройля будут минимально возможными, а значение амплитуды δ_{0m} плотности тока в металле проводника по условиям его термической стойкости - максимально возможным и соответственно когда значение длины Δz_{nh} его «горячих» продольных участков будет минимальным. Приняв, что в ранее указанном круглом сплошном стальном проводе ($r_0 = 0,8$ мм; $l_0 = 290$ мм; $n_{em} = 16,82 \times 10^{28}$ м⁻³ [2]) вдоль его продольной оси OZ (см. рис. 2) протекает апериодический импульс аксиального электрического тока $i_0(t)$ временной формы 9 мс/160 мс $(\delta_{0m} \approx 0.37 \text{ кA/мм}^2$ [2, 8]), из (7) для максимального значения квантового числа $n = n_m$ продольных электронных полуволн де Бройля длиной $\lambda_{ezn}/2 = l_0/n$ и соответственно максимального числа n_m квантованных зон продольной периодической локализации длиной (шириной) $\Delta z_{nh} \approx 5,7$ мм по (5) его дрейфующих свободных электронов следует, что $n_m \approx 32$.

ВЕРИФИКАЦИЯ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ ДЛЯ РАСЧЕТНОЙ ОЦЕНКИ КВАНТОВОГО ЧИСЛА *n*_m

Проверку истинности (работоспособности) формулы (7) для выбора максимального значения квантового числа $n = n_m$ в первом приближении выполним путем сравнения результатов расчета величины n_m по (7) и ранее рекомендованному соотношению, имеющему следующий вид [2]:

$$n_m = 2n_0^2, \tag{8}$$

где n_0 – главное квантовое число для атомов металла рассматриваемого проводника, равное числу электронных оболочек в этих атомах и соответственно номеру периода в периодической системе химических элементов Менделеева, которому этот металл проводника принадлежит (например, для меди Сu, цинка Zn и железа Fe $n_0 = 4$ [4]).

Видно, что формула (8) не учитывает влияния АВП тока $i_0(t)$ и геометрических параметров проводника на выбор квантового числа n_m. Данная формула была получена на основании научной гипотезы автора о том, что максичисло разновидностей свободных мальное электронов по их орбитальному l, магнитному m_l и спиновому *m_s* квантовым числам в металле проводника равно максимальному числу $2n_0^2$ связанных электронов В его атомах с одинаковым главным квантовым числом n_0 . Из (8) для стального провода ($n_0 = 4$) с импульсным током $i_0(t)$ указанной временной формы 9 мс/160 мс ($\delta_{0m} \approx 0,37$ кА/мм²) находим, что в рассматриваемом конкретном случае *n_m* = 32. Этот количественный результат совпадает с численными показателями для числа *n*_{*m*}, полученными по (7).

В подтверждение работоспособности полученного расчетного соотношения (7) могут указывать также и результаты расчетной оценки усредненного числа n_{0m} продольных квантованных электронных полуволн де Бройля в металлическом проводнике с аксиальным электрическим током $i_0(t)$ различных АВП, приведенные в [11]. Согласно достаточно строгому квантово-механическому подходу при определении в [11] квантового числа n_{0m} была получена следующая формула:

$$n_{0m} \approx m_e \delta_{0m} l_0 (e_0 n_{em} h)^{-1} K_m,$$
 (9)

где $K_m \approx 1,414$ – коэффициент, определяемый математической процедурой усреднения плотности аксиального электрического тока $\delta_0(t) \approx i_0(t)/S_0$ в исследуемом проводнике.

Сравнивая (7) и (9), можно констатировать их удивительную аналитическую схожесть, присутствие в них (этих формулах) незыблемых мировых констант и идентичных величин δ_{0m} , l_0 и n_{em} , характерных для рассматриваемого электрического тока проводимости $i_0(t)$ и металлического проводника. При этом нам не следует забывать о том, что эти оригинальные квантово-

Рис. 3. Общий вид оцинкованного стального провода ($r_0 = 0,8$ мм; $l_0 = 320$ мм; $\Delta_0 = 5$ мкм) после протекания по нему импульса аксиального электрического тока $i_0(t)$ временной апериодической формы 9 мс/160 мс большой плотности ($I_{0m} \approx 745$ A; $\delta_{0m} \approx 0,37$ кА/мм²; $n_{0m} = 9$; $\Delta z_{nh} \approx 7$ мм) [2].

механические формулы, связанные с расчетным описанием малоизученных на сегодня волновых продольных распределений дрейфующих свободных электронов в металле проводника с аксиальным током проводимости $i_0(t)$ различных видов и АВП, были получены совершенно различными путями. Из (7) и (9) видно, что имеет место неравенство вида: $n_m/n_{0m} > 1$. В действительности так и должно быть для исследуемого проводника с любым электрическим током $i_0(t)$ и любой его токонесущей (металлической) частью.

Отдельно укажем на то, что правомерность формулы (9) для определения в проводнике с током электрическим $i_0(t)$ усредненного квантового числа продольных n_{0m} для дебройлевских электронных полуволн длиной $\lambda_{e_{7D}}/2$ была подтверждена данными выполненных на мощном высоковольтном ГИТ с непосредственным участием автора высокотемпературных экспериментов [2, 11], связанных с исследованием квантованных ВЭП и «горячих» продольных участков длиной (шириной) Δz_{nh} в оцинкованном стальном проводе ($r_0 = 0.8$ мм; $l_0 = 320$ мм; $\Delta_0 = 5$ мкм) с протекающим в нем апериодическим импульсом тока $i_0(t)$ временной формы 9 мс/160 мс большой плотности $(\delta_{0m} \approx 0.37 \text{ кA/мм}^2)$. Согласно (9), при указанных исходных данных для l_0 , n_{em} и δ_{0m} искомое квантовое число будет равным $n_{0m} \approx 9$. На рис. 3 приведен общий вид этого сплошного стального провода для $n_{0m} = 9$ после воздействия на него в сильноточной разрядной цепи ГИТ мощного импульса тока $i_0(t)$ с указанными АВП.

На рис. З четко видны четыре нагретых до каления (такому тепловому белого цвета состоянию нагрева стали соответствует температура не менее 1200 °С [10]) «горячих» продольных участков длиной (шириной) $\Delta z_{nh} \approx 7$ мм, принимающих сферообразную форму из-за расплавления на них стального основания провода и вскипания в этих квантованных ($n_{0m} = 9$) зонах продольной периодической локализации дрейфующих свободных электронов цинкового покрытия данного

провода [2, 11]. Следует отметить, что в соответствии с (5) расчетное значение параметра для рассматриваемого случая Δz_{nh} $(n_{em} = 16.82 \times 10^{28} \text{ m}^{-3}; \delta_{0m} \approx 0.37 \text{ kA/mm}^2)$ оказывается примерно равным $\Delta z_{nh} \approx 5,7$ мм. Как видим, различия между опытными и расчетными значениями для длины (ширины) Δz_{nh} «горячих» продольных участков применительно к исследуемому стальному проводу $(r_0 = 0.8 \text{ мм}; l_0 = 320 \text{ мм}; \Delta_0 = 5 \text{ мкм})$ с указанным апериодическим импульсом аксиального электрического тока $i_0(t)$ не превышает 19%.

ЗАКЛЮЧЕНИЕ

1. На основании результатов, ранее выполненных с учетом закономерностей квантовой теоретических физики исследований продольного волнового распределения дрейфующих свободных электронов в изотропном металле тонкого цилиндрического проводника конечных размеров (длиной l_0 и радиусом r_0) с электрическим аксиальным током проводимости $i_0(t)$ различных видов и АВП, получено расчетное квантово-механическое соотношение (7) для приближенного определения в этом металлическом проводнике с указанным током $i_0(t)$ максимального значения квантового числа продольных $= n_m$ для квантованных n электронных полуволн де Бройля длиной $\lambda_{ezn}/2 = l_0/n$ и соответственно максимального числа *n_m* для квантованных зон продольной периодической локализации длиной (шириной) Δz_{nh} в нем дрейфующих под действием прилоего противоположным женного к краям электрического напряжения $u_0(t)$ свободных электронов.

2. Результаты выполненной верификации полученного соотношения (7) указывают на его правомерность (работоспособность) в области как высоковольтной импульсной техники, так и электрофизической обработки металлов давлением импульсного электрического тока проводимости $i_0(t)$ большой плотности (порядка 0,1 кА/мм² и более).

3. Полученные результаты по приближенному расчетному выбору квантового числа n_m указывают на работоспособность научной гипотезы автора о том, что максимальное число разновидностей дрейфующих коллективизированных свободных электронов в изотропном проводника металле рассматриваемого с электрическим током проводимости $i_0(t)$ различных видов и АВП определяется максимальным числом $2n_0^2$ связанных электронов в атомах используемого в проводнике металла с одинаковым главным квантовым числом n_0 .

ЛИТЕРАТУРА

- 1. Баранов, М.И., Квантово-волновая природа электрического тока в металлическом проводнике и ее некоторые электрофизические макропроявления. *Електротехніка і електромеханіка*, 2014, № 4, с. 25. doi: 10.20998/2074-272X.2014.4.05.
- 2. Баранов, М.И., Основные характеристики волнового распределения свободных электронов в тонком металлическом проводнике с импульсным током большой плотности, Электричество, 2015, № 10, с. 20.
- Baranov, M.I., Rudakov, S.V., Calculation-experimental method of research in a metallic conductor with the pulse current of electronic wave packages and de Broglie electronic half-waves. *Electrical engineering & electromechanics*, 2016, no. 6, p. 45. doi: 10.20998/2074-272X.2016.6.08.
- Кузьмичев, В.Е., Законы и формулы физики. Отв. ред. В.К. Тартаковский. Киев: Наукова думка, 1989. 864 с.
- 5. Марахтанов, М.К., Марахтанов, А.М., Периодические изменения температуры по длине стальной проволоки, вызванные электрическим током, Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия: Машиностроение, 2003, № 1, с. 37.
- Электротехнический справочник. Производство и распределение электрической энергии. Том 3, Книга 1. Под общей ред. И.Н. Орлова. М.: Энергоатомиздат, 1988. 880 с.
- 7. Baranov, M.I., Buriakovskyi, S.G., Rudakov, S.V., The instrumental providing is in Ukraine of model tests of objects of energy, aviation and space-rocket technique on resistibility to action of impulsive

current of artificial lightning. *Electrical engineering* & *electromechanics*, 2018, no. 4, p. 45. doi: 10.20998/2074-272X.2018.4.05.

- Baranov, M.I., Local heating of electrical pathways of power electrical equipment under emergency conditions and overcurrents, *Russ. Electr. Eng.*, 2014, vol. 85, no. 6, p. 354. doi: 10.3103/s1068371214060030.
- Кнопфель, Г., Сверхсильные импульсные магнитные поля. Пер. с англ. Ф.А. Николаева, Ю.П. Свириденко. М.: Мир, 1972. 391 с.
- 10. Кухлинг, Х., Справочник по физике. Пер. с нем. под ред. Е.М. Лейкина. М.: Мир, 1982. 520 с.
- 11. Baranov, M.I., Rudakov, S.V., Calculationexperimental determination of middle number of the quantized longitudinal electronic semiwaves de Broglie in a cylindrical explorer with an impulsive current. axial-flow Electrical engineering å electromechanics, 2020, 43. no. 2, p. doi: 10.20998/2074-272X.2020.2.06.

Summary

The results of approximate calculation of the maximal value of the quantum number of $n = n_m$ for the quantized standing longitudinal electronic de Broglie half-waves $\lambda_{ezn}/2 = l_0/n$ long and, accordingly, of the maximal number of n_m of the quantized areas of the longitudinal periodic localization with the length of Δz_{nh} of drifting lone electrons in the cylindrical explorers of eventual sizes (long l_0 and radius of r_0) with the axial-flow current of conductivity of $i_0(t)$ of the indicated kinds and peaktemporal parameters (PTP) are presented, taking into account the quantum-wave nature of the electric current of conductivity of $i_0(t)$ of different kinds (permanent, variable, and impulsive) and PTP in the metallic explorers. The results of verification of the obtained calculations of the quantum-mechanical correlation for the determination of the quantum number n_m confirm its possibility to be applied in such areas of engineering as high-voltage heavy-current impulsive technique and electrophysical treatment of metals by a strong electromagnetic field and by a pressure of a large impulsive current.

Keywords: metallic explorer, electric current of conductivity, quantized longitudinal electronic de Broglie half-waves, quantized areas of longitudinal localization of drifting electrons in an explorer