Ю.М. Рычков, А.Е. Василевич

О ПРОСТРАНСТВЕННО-ВРЕМЕННЫХ ХАРАКТЕРИСТИКАХ ЗАРЯДОВЫХ КЛАСТЕРОВ В СЛАБОПРОВОДЯЩИХ ЖИДКОСТЯХ

Гродненский государственный университет им. Янки Купалы, ул. Я. Купалы, 20-143 г. Гродно, 230026, Республика Беларусь

Вводные замечания

Известно [1, 2], что электрическая проводимость жидких диэлектриков осуществляется локально упорядоченными заряженными микрообластями (зарядовыми кластерами), управляя которыми (при помощи электрического поля), можно регулировать электрофизические характеристики жидкости с целью их применения в технике (электрогидродинамические преобразователи). Для реализации такого управления необходима информация о кинетике образования зарядовых кластеров. Поскольку в настоящее время теория вопроса еще не разработана, на первый план выступают экспериментальные методы исследования.

В качестве одного из них можно предложить регистрацию релеевского рассеяния света, прошедшего через исследуемую слабопроводящую жидкость. Возможность применения метода основана на том, что слабопроводящие жидкости, вследствии наличия в них зарядовых кластеров, проявляют свойства мелкодисперсных сред, для которых характерно:

1) большое различие в проводимостях (2–3 порядка) дисперсионных включений (кластеров) и основной среды (слабопроводящей жидкости);

2) выполнение условия $d \ll \lambda$, где d – характерный размер кластера [3, 4], λ – длина волны зондирующего излучения в слабопроводящей среде.

В этом случае согласно [3] применимо соотношение:

$$\frac{Q_{pac.}}{Q_{nor.n.}} = Q = \frac{\pi^3}{9} \cdot \left(\frac{d}{\lambda}\right)^3 \cdot \frac{\left(n^2 - \chi^2 - l\right)^2 + 4n^2 \chi^2}{n\chi},\tag{1}$$

где d – диаметр частиц; λ – длина волны зондирующего излучения в среде распространения; Q_{pac} и $Q_{norn.}$ – безразмерные коэффициенты рассеяния и поглощения, отнесенные к площади поперечного сечения частицы. Комплексный показатель преломления *m* связан с показателем преломления *n* и показателем поглощения χ соотношением $m = n - i \gamma \lambda$.

Учитывая, что:

$$\left|m^{2}-I\right|^{2} = \left(n^{2}-\chi^{2}-I\right) + 4n^{2}\chi^{2}, \quad Im\left(\frac{m^{2}-I}{m^{2}+2}\right) = -\frac{6n\chi}{\left|m^{2}+2\right|^{2}}, \tag{2}$$

по соотношению коэффициентов рассеяния и поглощения можно судить о характерных размерах частиц.

Для диэлектриков с известными магнитными свойствами ($\mu \approx 1$) и малыми потерями:

$$\mathcal{E} = \mathcal{E}' + i\mathcal{E}'', \ \mathcal{E}'' << l$$

© Рычков Ю.М., Василевич А.Е., Электронная обработка материалов, 2000, № 1, С. 29–33.

$$n = \sqrt{\varepsilon} \approx \sqrt{\varepsilon'}, \ \varepsilon'' = \frac{\sigma}{\varepsilon_0 \omega} \ . \tag{3}$$

Поэтому:

$$m^{2} = (n - i\chi)^{2} = n^{2} - 2i\chi n + \chi^{2} \approx \varepsilon = \varepsilon' + i\varepsilon'',$$

$$n \approx \sqrt{\varepsilon'} \quad \text{if } \chi \approx \frac{\sigma}{2\omega\varepsilon_{0}\sqrt{\varepsilon'}}.$$
(4)

и так как *n* >> χ , то

Следовательно:

$$d = \frac{3\lambda}{\pi} \sqrt[3]{\frac{n\chi Q}{(n^2 - \chi^2 - 1)^2}}.$$
 (5)

Выражение (5) позволяет по экспериментально измеренному *Q* определить размер зарядовых кластеров *d*.

Методика измерений.

В эксперименте (рис. 1) одновременно регистрируется мощность падающего, прошедшего и рассеянного излучения гелий-неонового лазера [4].

Рис. 1. Схема экспериментальной установки для исследования пространственно-временных характеристик зарядовых кластеров.

Линейно поляризованный свет гелий-неонового лазера (ЛГН-222) разделяется светоделительным кубиком ДК на два луча: опорный U_{nag} и предметный U_{np} . Опорный луч используется для контроля мгновенной выходной мощности лазера фотоприёмником ФП1. Предметный луч располяризуется четвертьволновой пластинкой $\lambda/4$ и фокусируется собирающей линзой Л в пучок диметром 0,1 мм. Сфокусированый луч проходит параллельно плоским медным электродам ЭЛ измерительной кюветы ИК помещенной в интегрирующую сферу ИС. Мощности излучения, прошедшего через исследуемую среду и рассеянного на зарядовых кластерах, регистрируются фотоприемниками ФП2, ФП3 соответственно. Аналоговые сигналы с фотоприемников преобразуются в цифровой код измерительной картой ввода/вывда КВВ, установленной в компьютере Pentium 150. Интервал измерений ($t_{mn} = 20$ мкс) задается программно, в зависимости от условий эксперимента. За начало отсчёта времени принимается момент подачи напряжения на электроды кюветы. Полученные данные обрабатываются в программе Excel, имеющей встроенный набор функций для статистичекой и математической обработки данных.

Для формирования импульсов напряжения на электродах измерительной кюветы используется генератор прямоугольных импульсов **ГПИ** ($U_{6blx} = 0-1$ кВ, $\tau_{H} = 100$ нс). Длительность формируемых импульсов $\tau_{H} = 10^{-3} - 10^{4}$ с определяется программно, в зависимости от условий эксперимента. Синхронизация формируемых импульсов также реализуется программно.

Использование быстродействующего устройства ввода/вывода позволяет регистрировать протекающие процессы в реальном времени.

Очевидно, что мощность зондирующего излучения гелий-неонового лазера можно определить как:

$$P_{na\partial}(t) = P_{np}(t) + P_{pac}(t) + P_{nor}(t) , \qquad (6)$$

где $P_{nad}(t)$, $P_{np}(t)$, $P_{pac}(t)$, $P_{noc}(t)$ – соответственно мощности падающего, прошедшего, поглощенного и рассеянного на кластерах излучения.

Нормируя на единицу, получаем:

$$K_{np}(t) + K_{pac}(t) + K_{no2}(t) = 1, \qquad (7)$$

rde: $K_{np}(t) = \frac{P_{np}(t)}{P_{nad}(t)}; \quad K_{pac}(t) = \frac{P_{pac}(t)}{P_{nad}(t)}; \quad K_{no2}(t) = \frac{P_{no2}(t)}{P_{nad}(t)}.$

Таким образом, измеряя $P_{nad}(t)$, $P_{np}(t)$ и $P_{pac}(t)$, можно найти коэффициенты пропускания и

рассеяния зондирующего излучения, вычислить из (7) коэффициент поглощения, а затем из выражения (5) определить размер зарядовых кластеров *d*.

Результаты измерений

Проведенные эксперименты показали, что основные изменения размеров зарядовых кластеров во времени происходят в приэлектродных слоях жидкости.

Здесь зафиксировано два переходных процесса развивающихся на различных расстояниях от электрода:

1. Быстрый процесс (~ 100 мкс), протекающий на расстояниях до 50-100 мкм (рис. 2).

Рис. 2. Результаты экспериментальных измерений временных характеристик переходных процессов у положительного электрода (0,1 мм), полученные для 7% раствора глицерина в диэтилсилоксане и 10% раствора этиленгликоля в гептане ($E_0 = 400 \text{ B/см}$).

2. Медленный процесс (~ 5–10 мин), протекающий на расстояниях 200–300 мкм (рис. 3).

Соответствующая этим процессам зависимость максимального установившегося размера кластера от расстояния до электрода показана на рис. 4.

Рис. 3. Результаты экспериментальных измерений размеров зарядовых кластеров d у положительного (+0,3 мм) и отрицательного (-0,3 мм) электродов для различных жидкостей.

Рис. 4. Зависимости характерных размеров зарядовых кластеров d от приэлектродного расстояния для различных жидкостей.

К полученным результатам следует также добавить корреляцию медленного процесса с вращением плоскости поляризации света, исследованной в [6] (рис. 5).

Выводы

Представленные результаты позволяют сделать вывод о том, что первый переходный процесс обусловлен формированием плотной (преимущественно ионной) части приэлектродного слоя, что коррелирует с результатами [5], полученными методом импульсных ВАХ. Второй (медленный) процесс обусловлен формированием рыхлой (кластерной) части, что коррелирует с результатами [5], полученными методом СВЧ зондирования и результатами [6], полученными методом измерения вращения плоскости поляризации света прошедшего через исследуемую слабопроводящую жидкость.

Рис. 5. Результаты экспериментальных измерений поворота плоскости поляризации (ϕ) у положительного (+0,3 мм) электрода, полученные для 7% раствора глицерина в диэтилсилоксане и 10% раствора этиленгликоля в гептане ($E_0 = 400$ B/см).

Список принятых обозначений

*Q*_{рас}, *Q*_{погл.} – безразмерные коэффициенты рассеяния и поглощения, отнесённые к площади попереч-

ного сечения частицы; m – комплексный показатель преломления полярной добавки; n – показателем преломления; χ – показателем поглощения; d – характерный размер кластера; λ – длина волны зондирующего излучения в среде распространения; ε_0 – диэлектрическая постоянная; ε – диэлектрическая проницаемость добавки; ε' – действительная часть диэлектрической проницаемости; ε'' – мнимая часть диэлектрической проницаемости; ε'' – мнимая часть диэлектрической проницаемости; ε'' – мнимая часть диэлектрической проницаемости; σ – проводимость добавки; ω – угловая частота зондирующего излучения; $P_{nad}(t)$, $P_{np}(t)$, $P_{pac}(t)$, $P_{noc}(t)$ – мощности падающего, прошедшего, рассеянного и поглощенного на кластерах излучения соответственно; $K_{np}(t)$, $K_{pac}(t)$, $K_{noc}(t)$ – нормированные коэффициенты прошедшей, рассеянной и поглощенной мощности соответственно.

ЛИТЕРАТУРА

1. Рычков Ю.М. // ИФЖ. 1997. Т.70. № 5. С. 761–765.

2. Рычков Ю.М. // ИФЖ. 1997. Т.70. № 6. С. 1007–1013.

З.Ван де Хюлст Г. Рассеяние света малыми частицами. М., 1961. С. 87.

4.Гончаров В.К., Концевой В.Л., Пузырев М.В., Сметанников А.С. // ПТЭ. 1995. № 5. С. 146.

5.Рычков Ю.М., Есипок А.В., Кропочева Л.В. // ИФЖ. 1997. Т.70. № 6. С. 1003–1006.

6.Василевич А. Е., Рычков Ю.М, Зайкова С.А. Вращение плоскости поляризации света в жидких диэлектриках // Тез. докл. V Международной науч. конф. "Современные проблемы электрофизики и электрогидродинамики жидкостей", Санкт-Петербург, 1998. С. 67–69.

Поступила 12.11.99

Summary

In work offered results of the experimental study space-timing characteristic charge clusters, acquired by the method of diffusing a light in low-conductivity liquids. As a result of conducted experiments was determined that in the vicinity of the electrode exist two connecting processes distinguishing on a distinctive time and coordinate. Quick process (~ 100 μ s) running on distances before 50–100 μ m is stipulated by forming thick (mainly ion) part of layer in vicinity of electrode. Slow process (~ 5–10 mines) running on distances ~ 200–300 μ m is stipulated by forming friable (cluster) part.