Новая методика расчета процессов в пластинчатом электрофильтре

И. П. Верещагин, ^{*}К. А. Смагин

Институт электроэнергетики, МЭИ,

ул. Красноказарменная, 14, г. Москва, 111250, Россия, ^{*}e-mail: <u>smaginka@mpei.ru</u>

Представлена новая методика расчета движения частиц в турбулентных потоках. Существующий в настоящее время метод Эйлера не позволяет точно учитывать зарядку частиц, а метод Лагранжа обладает высокими вычислительными затратами. Новый подход к этой проблеме основан на распределении концентрации частиц в турбулентной струе, распространяющейся из точечного источника. Методика учитывает разброс зарядов и требует малых вычислительных затрат.

Ключевые слова: электрофильтр, численное моделирование, зарядка частиц, турбулентный поток.

УДК 621.359.42

ВВЕДЕНИЕ

Пластинчатые электрофильтры являются основным средством очистки от золы отходящих газов ТЭС, работающих на угле [1]. Несмотря на простоту конструкции, процессы в электрофильтрах достаточно сложны. Они характеризуются взаимодействием турбулентного потока газа, коронного разряда и находящихся в них частиц золы [2]. Частицы золы переносятся турбулентным потоком газа вдоль электрофильтра, заряжаются в поле коронного разряда и движутся к электроду. Стохастический осадительному характер скоростей турбулентного потока определяет разброс в зарядах частиц и влияет на распределение их концентрации между электродами электрофильтра.

Первые попытки рассчитать распределение концентрации заряженных частиц в турбулентном потоке в поле плоского конденсатора отражены в [2]. Далее работы были продолжены применительно к моделям пластинчатого и трубчатого электрофильтров [3–5]. Основой для расчетов были уравнения неразрывности для потока частиц. К сожалению, принятая в расчетах модель зарядки частиц не позволяла адекватно учесть возможность разброса зарядов.

В настоящее время для расчета движения частиц в турбулентных потоках используются два основных метода: метод Лагранжа, реализуемый в виде расчетов траекторий частиц в турбулентной среде, и принцип Эйлера, который сводится к решению уравнения неразрывности для потока частиц [6]. При траекторном подходе его использование для расчета движения частиц в реальных электрофильтрах пока ограничено требуемыми очень большими вычислительными ресурсами [7]. В расчетах на основе уравнения неразрывности проблемы возникают с учетом процесса зарядки частиц в турбулентной среде. Предлагаемый в данной работе вероятностный подход к решению задачи лишен этого недостатка.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА

Схема пластинчатого электрофильтра представлена на рис. 1. Поток газа, содержащий частицы золы, поступает в канал электрофильтра, в котором между проводами и плоскими электродами создается коронный разряд. Частицы заряжаются и под действием поля выводятся из потока, осаждаясь на некоронирующих электродах.

Рис. 1. Схема канала пластинчатого электрофильтра.

Распределение параметров коронного разряда для системы «ряд проводов между плоскостями» рассчитывалось по методу разложения в ряд с учетом нулевого и первого приближений [2, 8, 9].

 $E_{\kappa x} = \frac{U\pi\sqrt{A}}{2dr^2} \sin\left(2x_1\right), \ E_{\kappa y} = \frac{U\pi\sqrt{A}}{2dr^2} \sinh\left(2y_1\right),$

Напряженность поля:

где

$$A = C_{2} + C_{1} \ln \left(r^{2} + \sqrt{1 + r^{4}} \right),$$

$$C_{1} = \frac{I}{2\pi^{3} (U / d)^{2} k\varepsilon_{0}},$$

$$C_{2} = \left(\frac{E_{0} r_{0}}{U} \right)^{2},$$

© Верещагин И.П., Смагин К.А., Электронная обработка материалов, 2016, 52(6), 30-34.

$$x_{1} = \frac{\pi x}{d}, y_{1} = \frac{\pi y}{d},$$
$$r^{2} = \sin^{2}(x_{1}) + \operatorname{sh}^{2}(y_{1}),$$
$$\theta = \operatorname{arctg}(-\operatorname{tg}(x_{1})\operatorname{cth}(y_{1})).$$

Плотность объемного заряда:

$$\rho = -\varepsilon_0 Uk (f_0 - f_1 \cos 2\theta),$$

$$f_0 = \frac{-C_1}{\sqrt{A(1 + r^4)}}, f_1 = \varphi_1 " + \frac{\varphi_1'}{r} - \varphi_1 \frac{4}{r^2}$$

Для расчета f_1 численно решалось обыкновенное дифференциальное уравнение:

$$f_{1}'\left[(1+r^{4})\varphi_{0}'+\frac{3}{2}r^{2}\varphi_{1}'\right]+$$

$$+f_{1}\left[2(1+r^{4})f_{0}+2r^{3}\varphi_{0}'+\frac{3}{2}r^{2}f_{1}+\frac{3}{2}r\varphi_{1}'+3\varphi_{1}\right]+$$

$$+\varphi_{1}'\left[(1+r^{4})f_{0}'+2r^{3}f_{0}\right]+2f_{0}\left[r^{2}f_{0}+r\varphi_{0}'\right]+2r^{2}\varphi_{0}'f_{0}'=0$$

с граничными условиями: $\varphi_1(R_1) = \varphi_1(R_2) = \varphi_1'(R_1) = 0$, где $\varphi_0' = -A^{0,5}/r$, $R_1 = \pi r_0/d$, $R_2 = \pi h/d$.

Ток коронного разряда на единицу длины провода (при $h/d \ge 0.75$)

$$I = 2\pi^{3}k\varepsilon_{0}d^{-2}C\left(1 + B\sqrt{\frac{r_{0}}{d}}\right)U(U - U_{0}),$$

$$B = 1,75, C = \left[1,7 \cdot 10^{-2}\left(h/d - 0,59\right)^{-1}\right] - 7 \cdot 10^{-2}$$

где k – подвижность ионов; U_0 – начальное напряжение.

К необходимым исходным данным относятся также гидродинамические характеристики потока газа в канале электрофильтра, прежде всего распределение средней скорости потока по сечению канала u_{π} и коэффициента турбулентной диффузии D_{π} .

Предположим, что во всех сечениях канала распределения скорости одинаковые. В соответствии с рекомендациями [10] для прямоугольного канала они могут быть приняты:

 в ламинарном подслое вблизи осадительного электрода (y₊ < 5):

$$u/u^* = y_+,$$

− в промежуточном (буферном) подслое $(5 \le y_+ \le 30)$:

$$u/u^* = 11,5 \lg\left(\frac{y_+}{5}\right) + 5,0,$$

– в турбулентном ядре потока ($y_+ \ge 30$):

$$u/u^* = 5,75 \lg y_+ + 5,5,$$

где u^* – характерная скорость турбулентных пульсаций скорости в ядре потока, $y_+ = yu^*/v$,

 $u^* = 0.2u_{\rm n}/Re^{1/8}$, *y* – расстояние до стенки канала, $Re = u_{\rm n}2h/v$, *v* – кинематическая вязкость газа.

Чем больше значение числа Рейнольдса, тем ближе распределение скорости к равномерному.

Коэффициент турбулентной диффузии *D*_т также мало изменяется по сечению канала электрофильтра, за исключением ламинарного подслоя у электродов. В результате анализа литературных источников в [2] рекомендуется:

$$\frac{D_{T}}{v} = \begin{cases}
9,3y_{+}^{3}, y_{+} \leq 26,33, \\
0,7\left(1 - \frac{y_{+}}{h_{+}}\right) - 1,8, \ 26,33 \leq y_{+} \leq 0,23h, \\
\frac{0,13hu^{*}}{v}, y_{+} \geq 0,23h.
\end{cases}$$
(1)

В формуле (1) не учтено влияние проводов как дополнительного возмущающего фактора. Однако этим влиянием можно пренебречь из-за малого диаметра проводов, что подтверждено экспериментами [11]. Важно другое – влияние гидродинамическое, которое получило название влияние электрического ветра. Экспериментальные данные [12] свидетельствуют, что при скорости потока 1 м/с и напряжении на электрофильтре 50 кВ направленным потоком электрического ветра можно пренебречь, но коэффициент турбулентной диффузии увеличивается в (1,6-2,1). Об увеличении D_T свидетельствуют также расчеты, выполненные с помощью программы Fluent [13]. Пока данных недостаточно, чтобы достоверно оценить степень увеличения *D*_T, но ясно, что в расчетах процессов это увеличение следует учитывать.

Еще одна особенность связана с влиянием турбулентности – необходимо учитывать эффект «пересечения траекторий» [14]. Он выражается в уменьшении коэффициента турбулентной диффузии частиц золы, которые не только переносятся потоком, но и перемещаются одновременно под действием электрического поля в поперечном направлении к осадительным электродам. Наличие скорости дрейфа уменьшает взаимодействие частиц с пульсациями скорости потока (рис. 2) [6]. Отметим, что малый размер частиц ($d_4 \leq 50$ мкм) позволяет пренебречь их инерционными свойствами и считать увлечение турбулентными пульсациями скорости полным.

ОСНОВНЫЕ ИДЕИ МЕТОДИКИ

Перейдем к изложению новой методики. Обобщением траекторного подхода и расчетов на основании уравнения неразрывности для потока частиц является стохастическое описание процессов в электрофильтре. Введем в пространстве между электродами прямоугольную сетку с шагом Δx и Δy (рис. 2).

Рис. 2. Турбулентная струя от *j*-го интервала *i*-го слоя: $E_{\kappa y}$ – напряженность поля коронного разряда вдоль оси *y*.

Пусть для произвольного интервала $\Delta y_{i,j}$ частицы размером $2r_u$ имеют концентрацию $N_{i,j}$ и заряд $q_{i,j}$. Двигаясь в турбулентном потоке вдоль оси x и в поле коронного разряда вдоль оси y, частицы смещаются на шаг Δx и распределяются по элементам Δy слоя i+1. Соответственно, если частицы обладают начальным зарядом $q_{i,j}$, то для каждого интервала $\Delta y_{i+1, j}$ в результате дополнительной зарядки частиц будет иметь место распределение частиц по величине заряда.

В основу метода положено распределение концентрации частиц в струе, распространяющейся из интервала в турбулентном потоке газа и поле коронного разряда. Выражение для такого распределения, полученное интегрированием формулы для точечного источника [15] и смещением распределения на величину $\Delta y_{op} = v_{op} \sqrt{\Delta y/u_n}$, имеет вид:

$$\frac{N(x, y)}{N_0} = 0.5 \left\{ \operatorname{erf} \left[a \left(y + \Delta y_{\partial p} + 0.5 \Delta y \right) \right] - (2) - \operatorname{erf} \left[a \left(y + \Delta y_{\partial p} - 0.5 \Delta y \right) \right] \right\},$$

где $a = (u_{\rm n}/(4D_{\rm r}x))^{0.5}$, N_0 – начальная концентрация. Выражение, стоящее справа от знака равенства в (2), имеет смысл вероятности перехода частицы, находящейся в интервале шириной Δy , в точку с координатами *x*, *y*. Поскольку на большом расстоянии от оси струи концентрация пренебрежимо мала, то распределение частиц в струе можно ограничить интервалом [- Δy_{nped} , Δy_{nped}]:

$$\Delta y_{npeo} = \frac{1}{a} \sqrt{\ln \frac{a \Delta y}{K_m \sqrt{\pi}}},$$

где $K_m = N(\Delta x, \Delta y_{nped} + \Delta y_{dp})/N_0$. Смещение частиц Δy_{dp} в формуле (2) определяется скоростью дрейфа в поле коронного разряда с учетом подзарядки их на интервале Δx . Движение частиц предполагается безынерционным. Скорость v_{dp} у определяется из уравнения:

где

$$F_{c} = \frac{24}{\text{Re}_{u}} \left(1 + \frac{\text{Re}_{u}^{2/3}}{6} \right) \frac{\gamma v_{\partial p y}^{2}}{2} S, \text{ Re}_{u} = \frac{v_{\partial p y} 2r_{u}}{v},$$

 $E_{\kappa v}q = F_c$,

причем здесь v -коэффициент кинематической вязкости газа; $\gamma -$ плотность газа, $S = \pi r_q^2 -$ площадь поперечного сечения частицы. Заряд частиц определяется по его значению в начале интервала Δx и приращению заряда на интервале по формулам [16]. Значения концентрации и зарядов частиц на каждом элементе Δy слоя *i*+1 вычисляются как сумма вкладов от всех элементов слоя *i*. В результате для каждого элемента нового слоя определяются концентрация частиц и распределение их по величине заряда. По статистическим параметрам распределений далее следует найти три характерных значения заряда q_{cp} , $q_{cp} + \sigma_q$, $q_{cp} - \sigma_q$. Эти значения используются как начальные на следующем шаге Δx .

Поток частиц на осадительный электрод на интервале Δx :

$$F_{oc i} = N_{oc} v_{\partial p y i} \Delta x_i.$$

Достоверность разработанной методики была подтверждена сопоставлением с расчетами по уравнению неразрывности потока частиц при заданном значении их заряда.

РЕЗУЛЬТАТЫ РАСЧЕТОВ И ИХ АНАЛИЗ

В качестве примера расчетов по предлагаемой методике выбран пластинчатый электрофильтр с проволочными коронирующими электродами, имеющий параметры: $r_{np} = 0,5$ мм, h = d = 120 мм. Условия расчетов: U = 50 кВ, $u_{\Pi} = 1,0$ м/с, $r_{q} = 2,0$ мкм, шаг сетки $\Delta x = \Delta y = 0,5$ мм, начальное сечение (x = 0) принято посередине между проводами, концентрация частиц $N_0 = 1,0$ при x = 0. Начальное значение заряда частиц принималось близким к нулю. Характерное время расчета до сечения x = 120 мм составило 5 с.

Результаты расчетов представлены на рис. 3–9. Распределения относительной концентрации частиц в сечениях расположены в зависимости от длины электрофильтра (рис. 3).

На начальном участке, когда происходит зарядка частиц (до x = 60 мм), они более или менее равномерно распределены между электродами. На втором участке появляется область, свободная от частиц вблизи провода, связанная с отталкивающим действием коронирующего электрода на частицы. Распределения имеют максимум, который с ростом x смещается к плоскости. Для частиц размером $2r_{y} = 4$ мкм протяженность участка составляет примерно 500 мм.

Рис. 3. Распределения концентрации частиц в сечениях при разных *х*.

Рис. 5. Функции распределения частиц по величине заряда в различных точках канала электрофильтра. Сплошная кривая соответствует нормальному распределению, построенному по расчетным значениям q_{cp} и σ_{a} .

Рис. 7. Распределения коэффициента вариации зарядов частиц для интервалов Δy в сечениях при разных *х*.

Рис. 4. Зависимость потока частиц в сечении $F/F_{\text{нач}}$ и потока осаждения $F_{\text{ос}}/F_{\text{нач}}$ от *x*.

Рис. 6. Распределения среднего заряда частиц $q_{cp}/q_{npe\partial.Ecp}$ для интервалов Δy в сечениях при разных *x*.

Рис. 8. Распределения по длине электрофильтра заряда $q_{cp n\pi}/q_{nped.Ecp}$ и скорости дрейфа частиц у плоскости $v_{dp. n\pi}$.

Рис. 9. Распределение отношения концентрации у плоскости к средней по длине электрофильтра.

Зависимости относительного потока частиц на выходе $F/F_{\rm нач}$ и количества осажденных частиц $F_{\rm oc}/F_{\rm нач}$ от длины электрофильтра представлены на рис. 4. Зависимость $F_{\rm oc}/F_{\rm нач}$ в логарифмических координатах представляет собой два линейных участка, причем второй соответствует более крутому спаду (максимум концентрации частиц имеет место вблизи осадительного электрода).

Для каждого интервала Δy получены распределения частиц по величине заряда. Расчетные ступенчатые распределения хорошо соответ-

ствуют нормальному закону с соответствующими параметрами q_{cp} и σ_q (рис. 5). Распределения относительной величины среднего заряда частиц $q_{cp}/q_{nped.Ecp}$ ($q_{nped.Ecp}$ – предельный заряд частицы при $E_{cp} = U/h$) для интервалов Δy в сечениях в зависимости от длины электрофильтра представлены на рис. 6. Распределения в сечениях с ростом х стремятся к равномерным. Следует отметить, что в сечениях вблизи проводов частицы практически отсутствуют. Соответствующие зависимости для коэффициента вариации $K_{q v} = \sigma_q / q_{cp}$ (рис. 7) свидетельствуют, что статистический разброс зарядов частиц приобретает наибольшее значение на начальном участке, когда происходит основное изменение заряда. При $x \ge 50$ мм разброс зарядов практически отсутствует.

Важной характеристикой процесса в электрофильтре являются зависимости заряда и скорости частиц вблизи плоскости от длины электрофильтра (рис. 8) и коэффициента неравномерности распределения частиц в сечениях электрофильтра $\chi = N_{oc}/N_{cp}$, равного отношению концентрации частиц у плоскости к их средней концентрации в сечении (рис. 9).

То обстоятельство, что заряд частиц у плоскости за исключением начального участка остается практически постоянным по длине электрофильтра и равным 0,93 от предельного заряда при средней напряженности и что коэффициент неравномерности χ имеет простое ступенчатое изменение, открывает путь для разработки упрощенной методики расчета степени очистки газа в электрофильтре.

ЗАКЛЮЧЕНИЕ

Предложенная новая методика расчета процессов в электрофильтрах, позволяющая учесть вероятностный разброс зарядов частиц, занимает сравнительно небольшое время расчета процессов в электрофильтрах реальной длины (до 1 часа). Расчетные распределения концентрации частиц в сечениях на разном расстоянии от входа изменяются от равномерного до существенно переменного, когда максимум концентрации имеет место у плоскости. Распределения частиц по величине заряда соответствуют нормальному закону. Разброс зарядов частиц имеет место только в начальной части электрофильтра, в основной части коэффициент вариации составляет менее 0,05. Расчет процессов в этом случае можно производить без учета разброса зарядов частиц.

ЛИТЕРАТУРА

- 1. Верещагин И.П., Левитов В.И. и др. Дымовые электрофильтры. М.: Энергия, 1980. 448 с.
- 2. Верещагин И.П., Левитов В.И., Мирзабекян Г.З., Пашин М.М. Основы электрогазодинамики дисперсных систем. М.: Энергия, 1974. 480 с.
- 3. Мирзабекян Г.З., Григорьев И.Н. Известия АН СССР. Энергетика и транспорт. 1975, (2), 51-60.
- Гриорьев Н.Н., Ковалев В.Д., Мирзабекян Г.З. Известия АН СССР. Энергетика и транспорт. 1976, (4), 75–84.
- 5. Мирзабекян Г.З., Ермилов И.В. Электричество. 1976, (3), 36–40.
- 6. Schmid H.-J., Vogel L. *Powder Technol.* 2003, **135–136**, 118–135.
- Farnoosh N., Adamiak K., Castle G.S.P. *IEEE T* Dielect El In. 2011, 18, 1439–1452.
- 8. Верещагин И.П., Семенов А.В. Электрические поля в установках с коронным разрядом. М.: МЭИ, 1984. 100 с.
- 9. Верещагин И.П., Смагин К.А., Тимофеев Е.М., Ковалев Д.И. *Новое в российской электроэнергетике*. 2013, (5), 18–30.
- 10. Лойцянский Л.Г. *Механика жидкости и газа*. М.: Дрофа, 2003. 840 с.
- 11. Suda J.M., Ivancsy T., Kiss I. Proc. Int. Conf. microCAD'05. 2005, 9–11.
- 12. Верещагин И.П., Гоник А.Е. *Труды МЭИ*. 1975, (224), 72–75.
- 13. Schmid H.-J. *Powder Technol.* 2003, **135–136**, 136–149.
- 14. Csanady G.T. J Atmos Sci. 1963, 20(3), 201-208.
- 15. Фукс Н.А. *Механика аэрозолей*. М.: АН СССР, 1955. 352 с.
- 16. Lawless P.A. J Aerosol Sci. 1996, 27(2), 191-215.

Поступила 04.09.15 После доработки 08.06.16 Summary

The novel technique presented in this paper is based on parameters of a turbulent jet spreading from a point source. This technique takes into account stochastic dispersion of particle charges and has a low computational cost.

Keyword: electrostatic precipitator, numerical modelling, particle charging, turbulent flow.