Исследование глубины нагрева высоковязкой диэлектрической жидкости в высокочастотном электромагнитном поле методом теории размерности

М. А. Фатыхов

Федеральное государственное образовательное учреждение высшего профессионального образования «Башкирский государственный педагогический университет им. М. Акмуллы», ул. Октябрьской революции, 3, г. Уфа, 450000, Башкортостан, Россия, e-mail: <u>fatykhovma@mail.ru</u>

Получены критерии подобия, описывающие процесс нагрева нефтяного пласта в высокочастотном электромагнитном поле. Показана возможность применения их для определения глубины нагрева нефтяного пласта.

Ключевые слова: высоковязкая диэлектрическая жидкость, высокочастотное электромагнитное поле, метод, теория размерности, нефтяной пласт, температура.

УДК 539.1: 622.276

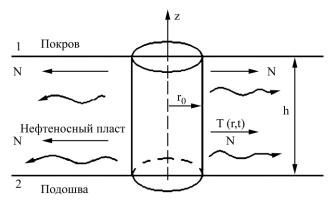
В настоящее время изучаются и находят применение новые методы повышения нефтеотдачи и интенсификации нефтедобычи. К ним можно отнести и высокочастотное электромагнитное воздействие. Объектом данного метода является нефтеносный пласт. Цель метода — интенсификация извлечения высоковязкой, неньютоновской, битумной, высокопарафинистой нефти из залежей с плохими коллекторскими свойствами, высокообводненных и глубокозалегающих пластов.

При высокочастотном электромагнитном воздействии происходят интенсивный нагрев нефтяного пласта вокруг скважины, уменьшение вязкости нефти. Радиус области разжижения нефти со временем увеличивается. С повышением температуры происходят физико-химические процессы. Эти процессы и явления исследованы теоретически и экспериментально, однако отсутствует их подробный анализ. Одним из методов решения этой проблемы является метод теории подобия и размерности [1], который применительно к рассматриваемым задачам не разработан.

Методы теории подобия и размерности играют особенно большую роль при моделировании физических процессов [2]. Применение этих методов к нашей задаче значительно облегчает обработку результатов, полученных при моделировании процесса нагрева пласта, а также позволяет получить достаточно точные выводы при сравнении промысловых и лабораторных данных.

Высокочастотное электромагнитное воздействие представляет практический интерес для глубокого нагрева нефтяного пласта [3]. Впервые это положение проверялось на Мордово-Кармальском битумном участке Республики

Татарстан, где осуществлялся высокочастотный разогрев призабойной зоны пласта по радиусу от скважины на глубину 5 м в течение 12 суток при мощности 15–20 кВт [4, 5]. На этой глубине температура термопарами не была зарегистрирована. С целью установления достоверности полученных данных в настоящей работе исследуются особенности пространственно-временного распределения температуры в пласте методом теории размерности и подобия [1].


В настоящее время при изучении температурных полей в нефтяных пластах используются два метода, названных «точной схемой» и «схемой сосредоточенной ёмкости» [6]. В «точной схеме» пласт и окружающие его породы считаются термически изотропными, имеющими теплофизические характеристики, совпадающие с характеристиками реального пласта, его кровли и подошвы. «Схема сосредоточенной ёмкости» предполагает, что пласт имеет бесконечно большую теплопроводность в вертикальном направлении, а теплопроводность пласта в направлении его простирания является конечной, совпадающей с теплопроводностью реального пласта. Породы считаются термически изотропными с реальным значением коэффициента теплопроводности. В «схеме сосредоточенной ёмкости» поле температуры в интервале пласта не зависит от вертикальной координаты.

В предпринятом исследовании воспользуемся «точной схемой». Следуя работе [7], рассмотрим температурную задачу в цилиндрической системе координат, где среда представлена тремя областями с плоскими границами раздела, перпендикулярными оси z (рис. 1).

В описании температурной задачи примем следующие допущения: пласт считается однородным и изотропным по гидродинамическим и

теплофизическим свойствам; породы, окружающие пласт, предполагаются непроницаемыми и изотропными по теплофизическим свойствам. Пренебрегаем зависимостью коэффициента теплопроводности от радиальной координаты. Источник, связанный со скважиной, излучает высокочастотные (ВЧ) электромагнитные (ЭМ) волны в радиальном направлении. Вследствие объемного поглощения электромагнитной энергии вокруг скважины происходит разогрев пласта. Фильтрационным движением нефти и связанным с ним конвективным переносом тепла, а также теплообменом на поверхности скважины пренебрегается.

Рис. 1. Геометрия модели. В пласте расположен излучатель электромагнитных волн, высота которого равна толщине пласта.

В рамках указанной модели процесс нагрева пласта описывается уравнением теплопроводности:

$$\frac{\partial T}{\partial t} = a \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{\alpha N_0}{\pi r h c \rho} e^{-2\alpha(r - r_0)}, \quad (1)$$

$$\frac{\partial T_1}{\partial t} = a_1 \left(\frac{\partial^2 T_1}{\partial r^2} + \frac{1}{r} \frac{\partial T_1}{\partial r} + \frac{\partial^2 T_1}{\partial z^2} \right), \tag{2}$$

$$\frac{\partial T_2}{\partial t} = a_2 \left(\frac{\partial^2 T_2}{\partial r^2} + \frac{1}{r} \frac{\partial T_2}{\partial r} + \frac{\partial^2 T_2}{\partial z^2} \right),\tag{3}$$

где a, a_1 , a_2 — коэффициенты температуропроводности пласта 1- и 2-го слоев соответственно, м 2 /с; c — удельная теплоемкость, Дж/кг·К; ρ — плотность, кг/м 3 ; h — толщина пласта, м; r и z — цилиндрические координаты, м; T, T_1 , T_2 — температуры пласта 1- и 2-го слоев соответственно, К; t — время воздействия высокочастотного электромагнитного поля на диэлектрическую среду, с; N_0 — мощность ВЧ генератора, Вт; r_0 — радиус скважины, м; α — коэффициент поглощения среды, м $^{-1}$.

На границах пласта с покрывающей и подстилающей породами заданы условия равенства температур и тепловых потоков, то есть краевые условия:

$$T_1 = T_2 = T = T_0$$
 при $t = 0$, (4)

$$\left. \lambda_1 \frac{\partial T_1}{\partial z} \right|_{z=+\frac{h}{2}} = \lambda \frac{\partial T}{\partial z} \bigg|_{z=\frac{h}{2}},\tag{5}$$

$$\lambda_2 \frac{\partial T_2}{\partial z} \bigg|_{z = -\frac{h}{2}} = \lambda \frac{\partial T}{\partial z} \bigg|_{z = -\frac{h}{2}}, \tag{6}$$

$$T_1 = T_2 = T = T_0$$
 при $r \to \infty$, (7)

$$\frac{\partial T_1}{\partial r} = \frac{\partial T_2}{\partial r} = \frac{\partial T}{\partial r} = 0$$
 при $r = r_0$ (8)

где T_0 — начальная температура до включения электромагнитного поля; λ , λ_1 , λ_2 — коэффициенты теплопроводности пласта 1- и 2-го слоев, $Bt/K\cdot M$.

Из системы уравнений теплопроводности видно, что основными величинами, от которых зависит температура в пласте, являются коэффициент поглощения α , мощность электромагнитного поля N_0 , коэффициент теплопроводности $\lambda = c\rho a$ окружающих пласт пород с удельной теплоемкостью c и плотностью ρ ; коэффициент теплопроводности λ_{Π} , c_{Π} и ρ_{Π} — соответственно удельная теплоемкость и плотность, толщина пласта h, радиус пласта r_0 , время воздействия t.

При этих условиях, согласно системам (1)–(8), распространение тепла в пласте определяется следующими величинами:

$$\Delta T, N_0, \lambda_{\Pi}, c_{\Pi}, \rho_{\Pi}, \lambda, c, \rho, h, r, z, \alpha, t, \tag{9}$$

где $\Delta T = T - T_0$ — изменение температуры пласта; T_0 , T — начальная температура пласта и температура в точке с координатами r, z, t.

Запишем размерности фигурирующих в задаче величин:

$$\begin{split} \left[N_{0}\right] &= L^{2}MT_{P}^{-3}; \; \left[\Delta T\right] = \theta; \; \left[\lambda\right] = MLT_{P}^{-3}\Theta^{-1}; \\ \left[c\right] &= L^{2}T_{P}^{-2}\theta^{-1}; \; \left[\rho\right] = ML^{-3}; \\ \left[\lambda_{\Pi}\right] &= MLT_{P}^{-3}\Theta^{-1}; \; \left[c_{\Pi}\right] = L^{2}T_{P}^{-2}\theta^{-1}; \; \left[\rho_{\Pi}\right] = ML^{-3}; \\ \left[h\right] &= L; \; \left[r\right] &= L; \; \left[t\right] &= T_{P}; \; \left[z\right] &= L; \; \left[\alpha\right] &= L^{-1}. \end{split}$$

Размерности 13 величин (9) выражаются через пять основных единиц измерения: температуру — θ , длину — L, массу — M, количество теплоты — Q_p и время — T_p . Число величин с независимыми размерностями также равно пяти:

$$[\Delta T] = \theta, [h] = L, [t] = T_p, [\rho] = ML^3.$$
 (11)

Поэтому из 13 размерных величин (9) можно образовать 13-5=8 независимых безразмерных критериев подобия. Для их нахождения воспользуемся уравнением теплопроводности и граничными условиями (4)–(8). Используя параметры, которые входят в это уравнение, и величины (9),

можно составить следующие безразмерные комбинации, или критерии:

$$T^* = \frac{\Delta T \lambda_{\Pi} h}{N_0}, \quad Fo = \frac{\lambda_{\Pi} t}{c_{\Pi} \rho_{\Pi} h^2}, \quad N^* = \frac{\alpha N_0}{T_0 \lambda}, \quad R^* = \frac{r}{h},$$
$$Z^* = \frac{z}{h}, \quad \Lambda = \frac{\lambda}{\lambda_{\Pi}}, \quad \frac{c}{c_{\Pi}}, \quad \frac{\rho}{\rho_{\Pi}}. \tag{12}$$

Исходя из некоторых физических соображений, число полученных безразмерных параметров можно несколько уменьшить. Величины c_{Π} и ρ_{Π} пласта входят в параметр Фурье Fo только в виде произведения $c_{\Pi}\rho_{\Pi}$. То же самое можно сказать относительно c и ρ , так как в параметр Fo вместо $c_{\Pi}\rho_{\Pi}$ можно подставить $c\rho$. Поскольку указанные величины в остальные параметры в другой комбинации не входят, то их можно объединить, образовав один безразмерный параметр:

$$C = \frac{c\rho}{c_{\Pi}\rho_{\Pi}}.$$
 (13)

С учетом (9), (12) и (13) функциональную зависимость для безразмерной температуры пласта можем записать в виде:

$$T^* = f(Fo, N^*, \Lambda, C, R^*, Z^*).$$
 (14)

Соответственно изменение температуры пласта ΔT определяется решением:

$$\Delta T = \frac{N_0}{\lambda_{\Pi} h} f(Fo, N^*, \Lambda, C, R^*, Z^*).$$
 (15)

Из полученного выражения (15) следует, что изменение температуры ΔT пласта прямо пропорционально мощности N_0 источника высокочастотного электромагнитного излучения. Выбрав мощность N из соображений удобства проведения опытов, полученные результаты можно пересчитать для любого интересующего значения мощности N_1 . Соответствующее значение избыточной температуры ΔT_1 определяется при этом из выражения:

$$\Delta T_1 = T^* \frac{N_1}{\lambda_{\text{TI}} h}.$$

Условия моделирования процесса вытекают из необходимости выполнения равенства в модели и натуре безразмерных параметров, входящих в правую часть (15). Если модель пласта изготовлена из натуральных материалов, то этим обеспечивается выполнение условий:

$$(\Lambda)_{MOJI} = (\Lambda)_{HAT}, (C)_{MOJI} = (C)_{HAT}.$$
 (16)

Известно, что длина ВЧ ЭМ волны в пласте составляет десятки метров. Для соблюдения условий моделирования размеры эксперимен-

тальных моделей должны быть сравнимы с длиной ЭМ волны и больше. В лабораторных условиях модели таких размеров создать невозможно. Поэтому условия моделирования процесса вытекают из необходимости равенства в модели и натуре безразмерных параметров – критериев подобия, входящих в правую часть (15). Для выполнения этого условия желательно иметь минимально допустимое число критериев, которые определяются количеством независимых размерностей и выбором основных единиц измерения.

Применительно к нашей задаче условие равенства безразмерных критериев запишется в виде:

$$\left(T^*\right)_{\text{MOД}} = \left(T^*\right)_{\text{HAT}},\tag{17}$$

$$(Fo)_{\text{MOД}} = (Fo)_{\text{HAT}}, \tag{18}$$

$$\left(N^*\right)_{MOZ} = \left(N^*\right)_{HAT},\tag{19}$$

$$(Z^*)_{MOJ} = (Z^*)_{HAT}.$$
 (20)

К перечисленным условиям добавляются требования, вытекающие из геометрического подобия внешних размеров моделируемой системы (пласта и окружающих пород), которые приняты неограниченными.

Из условия

$$\left(R^*\right)_{MOJI} = \left(R^*\right)_{HAT} \tag{21}$$

следует, что при уменьшении в модели толщины пласта в *п* раз во столько же раз в модели необходимо уменьшить радиус скважины. Равенства (18)–(20) служат для определения соответственных моментов времени и сходственных точек. Таким образом, появляется возможность решить следующую задачу: определить температуру пласта на заданной глубине высокочастотного электромагнитного прогрева. Используя полученные соотношения для параметров подобия с помощью анализа размерностей, мы можем рассчитать значение температуры на глубине 5 м.

Возникает необходимость проверки выполнения вышеперечисленных условий для натурных и модельных параметров. С этой целью проводились экспериментальные исследования температуры на модели пласта при сверхвысокочастотном электромагнитном воздействии.

Следует заметить, что высокочастотное и сверхвысокочастотное электромагнитные воздействия отличаются только способами их генерирования и ввода в рабочую среду, а нет принципиального различия в механизме взаимодействия с ней. Если мы пользуемся термином «сверхвысокочастотное» электромагнитное воздействие, то имеем в виду и высокочастотный диапазон.

Для экспериментальных исследований нагрева пористой среды, насыщенной высоковязкой нефтью, в сверхвысокочастотном электромагнитном поле разработана установка, схема которой приведена на рис. 2.

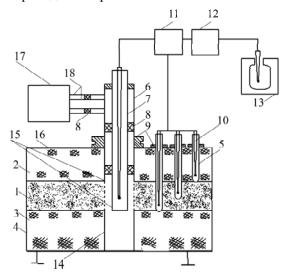


Рис. 2. Схема экспериментальной установки. I — модель пласта; 2 — кровля; 3 — подошва; 4 — металлический кожух; 5 — термокарманы; 6 — «обсадная колонна»; 7 — «насосно-компрессорная труба»; 8 — диэлектрические шайбы; 9 — цанговое устройство; 10 — термопары; 11 — многоконтактный переключатель; 12 — микровольтметр; 13 — сосуд Дьюара; 14 — перфорированная диэлектрическая трубка; 15 — электромагнитный излучатель; 16 — металлическая крышка; 17 — сверхвысокочастотный генератор; 18 — фидер.

Установка включает металлический корпус, трехслойную модель пласта, «скважину» с помещенным в нее электромагнитным излучателем, а также источник электромагнитной энергии, контрольно-измерительные приборы.

Моделью пласта служил кварцевый песок, насыщенный битумной нефтью Мордово-Кармальского месторождения Республики Татарстан. В качестве кровли и подошвы использовалась бентонитовая глина, замешанная на минерализованной воде (25% поваренной соли) до тестообразной консистенции. Радиус модели опре-

делялся из условия
$$r>r_{\min}=\frac{1}{r_a}=0,5\frac{\lambda_0}{\pi\sqrt{\varepsilon'}\mathrm{tg}\delta}$$
, где

 λ_0 — длина электромагнитной волны в вакууме, м; r_{α} — коэффициент поглощения электромагнитных волн в пласте, м⁻¹; є', tg δ — диэлектрическая проницаемость и тангенс угла диэлектрических потерь модели пласта.

В качестве натурных (промысловых) и модельных (лабораторных) данных использовались параметры, представленные в таблице.

Эти параметры применительны к Мордово-Кармальской залежи битумов. Значения натурных величин ρ , T_0 взяты из работы [2], все остальные значения, в том числе модельных величин, представлены в работе [5]. Используя результаты лабораторных исследований распределения температуры в модели пласта, представленные в работе [6], получили, что коэффициент подобия равен 100.

В условиях эксперимента $\varepsilon' = 7,5$, $tg\delta = 0,05$, которые определялись экспериментально. Следовательно, радиус модели составляет 0,147 м.

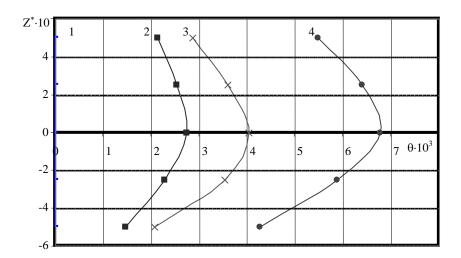
Для того чтобы исключить влияние стенки модели на распределение электромагнитного поля из-за отражения от нее волны, радиус модели выбирался равным 0,25 м. Толщина подошвы и кровли составляла 0,28 м, что также исключает влияние дна и крышки модели пласта при отражении электромагнитных волн. Толщина пласта выбрана из условия согласования сверхвысокочастотного генератора с излучателем и составляла 0,08 м.

Одним из основных элементов установки является устройство ввода энергии электромагнитного поля в пласт через скважину. Устройство содержит тройник с короткозамыкающим поршнем, коаксиальную линию передачи, излучатель. Коаксиальная линия передачи состоит из внешней (латунной) и внутренней (медной) трубок. Все узлы устройства, по которым передавали в пласт энергию электромагнитного поля, имеют волновое сопротивление 50 Ом и сечение $d=0.008~{\rm M},\ D=0.0215~{\rm M}$ (где $d-{\rm B}$ внешний диаметр внутреннего проводника; $D-{\rm B}$ внутренний диаметр внешнего проводника). Узлы коаксиальной линии передачи центрированы с помощью фторопластовых шайб.

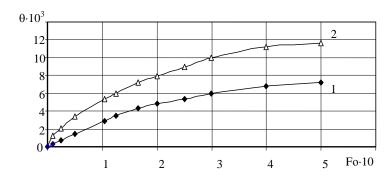
Электромагнитным излучателем служит система, состоящая из концов внешней трубки и выступающей за ней внутренней трубки.

Источником электромагнитной энергии является сверхвысокочастотный генератор «Парус» с вырабатываемой частотой 2375 МГц. Подаваемая на линию передачи мощность измерялась калориметрическим методом и составила около 450 Вт.

Вначале пласт полностью насыщался битумной нефтью.


Методика эксперимента заключалась в регистрации распределения температуры при сверхвысокочастотном электромагнитном воздействии. Температура в пласте и на границах пласта с кровлей и подошвой измерена медноконстантановыми термопарами. Результаты измерений обрабатывались в безразмерных величинах (12).

На рис. 3 показаны температурные профили в пласте в различные моменты времени, на рис. 4 — изменение безразмерной температуры в зависимости от безразмерного времени.

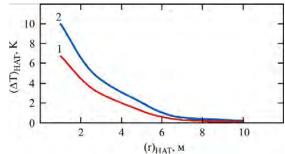

Распределение температуры в пласте по его толщине неравномерное: температура в середине

Параметры	<i>h</i> , м	<i>f</i> , Гц	$\lambda_{arDeta},$	α, m ⁻¹	c_{Π} ,	ρ_{Π} ,	N_0 , BT	T₀, °K
			Вт/м-К		Дж/кг∙К	кг/м ³		
Натурные	8	13,56	1,75	0,036	2133	961	15.10^{3}	281
Модель	0,08	2400	1,1	3,6	1220	2050	95	293

Физические параметры пласта в натуре и модели

Рис. 3. Распределение температуры в призабойной зоне пласта при электромагнитном воздействии на безразмерном расстоянии $R^* = 0.44$ при различных значениях параметра Фурье: I - 0; 2 - 0.009; 3 - 0.0250; 4 - 0.032.

Рис. 4. Изменение безразмерной температуры в зависимости от безразмерного времени на разных безразмерных расстояниях от излучателя: I - 0.88; 2 - 0.44.


пласта больше, чем в кровле и подошве. С увеличением времени воздействия эта неравномерность увеличивается (рис. 3).

Из рис. 4 следует, что вначале наблюдается интенсивный рост температуры в пласте, который со временем замедляется, а в дальнейшем температура стремится к установившемуся значению.

Показанные данные (рис. 3 и 4) свидетельствуют об убывании температуры в пласте с расстоянием. Изменение температуры через равные интервалы расстояния неодинаково. Вблизи скважины это изменение незначительно, затем все более растет и к периферии прогретой зоны уменьшается. По мере удаления от скважины температура в середине пласта значительно отличается от температуры в кровле и подошве пласта.

При использовании безразмерных параметров (12), критериев подобия (17)–(21) и результатов

модельных исследований (рис. 3 и 4) были найдены значения температуры в реальном (натурном) пласте. На рис. 5 показано распределение температуры в пласте. Как видно из данного рисунка, на расстоянии 5 м изменение температуры составляет около 1К, что находится в пределах ошибки измерений температуры термопарой в промысловых условиях.

Рис. 5. Зависимость изменения температуры в пласте: I-c учетом уменьшения мощности ВЧ излучения по скважине и согласования генератора с ней; 2- без их учета.

По кривой 1 на рис. 5 мы можем определить изменение температуры на произвольном расстоянии от излучателя.

выводы

- 1. Получены безразмерные критерии подобия, характеризующие нагрев нефтяного пласта в сверхвысокочастотном электромагнитном поле.
- 2. Описана лабораторная установка, позволяющая экспериментально исследовать влияние сверхвысокочастотного электромагнитного поля на изменение температуры в пористой среде, насыщенной нефтью. Электромагнитное поле в модель пласта вводится через межтрубное пространство скважины. Критерии подобия позволяют перенести результаты исследований и на высокочастотный диапазон.
- 3. Выявлено немонотонное изменение температуры по толщине пласта: середина пласта нагревается значительно больше и быстрее, нежели вблизи кровли и подошвы пласта.
- 4. При использовании результатов лабораторных исследований и безразмерных критериев подобия показана возможность определения глубины теплового воздействия на пласт в высокочастотном электромагнитном поле.
- 5. Изложенные результаты могут быть использованы для обоснования эффективности применения энергии высокочастотного и сверхвысокочастотного электромагнитного полей с целью теплового воздействия на нефтяной пласт, интенсификации притока углеводородной жидкости в скважину, а также для теоретических исследований изучаемого процесса и обоснования достоверности их результатов.
- 6. Материалы данной работы можно успешно применить и для анализа результатов исследований, связанных с моделированием других тепловых методов воздействия на нефтяные пласты [8, 9].

ЛИТЕРАТУРА

- 1. Седов Л.И. *Методы подобия и размерности в механике*. М.: Наука, 1972. 440 с.
- 2. Малофеев Г.Е. О параметрах подобия нагрева пласта при тепловой обработке скважин. Физическое и математическое моделирование механизмов нефтегазоотдачи. М.: Наука, 1981. 21–26.
- Carrizales M.A., Larry W. Lake, Johns R.T. Production Improvement of Heavy-Oil Recovery by using Electromagnetic Heating. SPE Annual Technical Conference and Exhibition, 21-24 September, Denver, Colorado, USA. 2008. SPE-115723-MS. http://dx.doi.org/10.2118/115723-MS
- 4. Фатыхов М.А., Фатыхов Л.М. Особенности фазовых переходов в сверхвысокочастотном электромагнитном поле. *Научное обозрение*. 2014, (8-2), 576–580.
- 5. Фатыхов М.А., Худайбердина А.И. Комбинированные методы воздействия на нефтяные пласты на основе электромагнитных эффектов. Уфа: Изд-во БГПУ, 2010. 112 с.
- 6. Фатыхов М.А. Экспериментальное исследование фильтрации высоковязкой нефти в электромагнитном поле. *Известия вузов: Нефть и газ.* 2006, **6**, 53–56.
- 7. Филиппов А.И., Михайлов П.Н., Иванов Д.В. Температурное поле радиоактивных изотопов в пористой среде. *Теплофизика высоких температур.* 2010, **48**(1), 96–104.
- 8. Барышников А.В., Стрекалов А.В., Грачев С.И. Повышение нефтеотдачи пластов за счет воздействия электромагнитным полем. *Научное обозрение*. 2013, (4), 90–92.
- 9. Fatykhov M.A., Fatykhov L.M. Microwave Electromagnetic Method of Melting the Paraffin Plug in an Open Coaxial System. *J Eng Phys Thermophys*. 2015, **88**(3), 724–729.

Поступила 13.10.14 После доработки 23.03.15

Summary

The criteria of similarity describing the process of heating of an oil layer in a high-frequency electromagnetic field are received. A possibility of their application for the determination of the depth of heating of an oil layer is shown.

Keywords: high-viscosity dielectric liquid, high-frequency electromagnetic field, method, theory of dimension, oil layer, temperature.