Частные обобщения вольт-амперных характеристик коронного разряда в газах

Ф. П. Гросу^а, Ан. М. Болога^b, М. К. Болога^a, О. В. Моторин^a

^аИнститут прикладной физики АН Молдовы,

ул. Академическая, 5, г. Кишинев, MD-2028, Республика Молдова, e-mail:<u>mbologa@phys.asm.md</u> ^bTexнологический институт Карлсруэ, Институт технической химии,

Герман фон Гельмгольц Пл.1, Эггенштайн – Леопольдсхафен, 76344, Германия, e-mail: andrei.bologa@kit.edu

Приводятся обобщения экспериментальных вольт-амперных характеристик коронного разряда для гелия и синтетического воздуха при положительной и отрицательной полярностях коронирующего электрода сложной звездообразной формы при различных давлениях газов, а также обобщения характеристик, для сухого воздуха при различных температурах и нормальном давлении (коаксиальная система электродов). При обобщении отдельные семейства характеристик сводятся к единой зависимости, описываемой обобщающим уравнением подобия, представляющего отрезок биссектрисы. Рассмотрены отдельные аспекты прикладного характера методов подобия в вопросах коронного разряда. Подтвердилась таунсендовская структура характеристик, что может служить основой ее широкого применения.

Ключевые слова: коронный разряд, вольт-амперные характеристики, гелий, воздух, обобщение, критерии подобия.

УДК 537.527.3

ВВЕДЕНИЕ

Коронный разряд занимает особое место среди газовых электрических разрядов. Исследования в этой области ведутся под разными научно-техническими аспектами в различных условиях с использованием как традиционных электродных систем типа «игла – плоскость» [1], так и сложных конфигураций электродных систем типа «звездочек» внутри цилиндрических электродов [2]. Изучаются закономерности разряда при высоких давлениях и температурах в зависимости от ряда факторов, таких как тип газа, электрическое напряжение, его полярность, силы электрического тока, а в случае смесей газов – их концентраций, и т.д. Расширяется область исследований путем охвата новых смежных областей физики, например спектрометрического изучения подвижностей ионов в смеси кислорода и азота [3]. Разнообразны и цели исследований: определяются вольт-амперные характеристики (ВАХ) коронного разряда в гелии применительно к изучению подвижностей ионов [4], рассматриваются вопросы моделирования микроплазменного разряда в гелии [5], численного моделирования разряда в кислороде при различных давлениях [6], влияние температуры на ВАХ в воздухе для системы «игла-плоскость» [7] и численным анализом установлены закономерности этого влияния.

Коронный разряд довольно часто встречается в природе, а также находит широкое практическое применение в различных технологических процессах, в частности в газовых рентгеновских счетчиках [8], при электрофильтрации [9], охлаждении лазерной техники [10, 11], интенсификации тепломассообменных процессов [12], прокачке диэлектрических жидкостей [13], генерировании электроэнергии [14] и др. Интенсивность коронного разряда определяется условиями его реализации и зависит от величины и полярности приложенного напряжения, геометрии электродной системы, температуры, давления, влажности и химического состава газов и т.д. В отличие от других газовых разрядов специфика коронного состоит в том, что он сопровождается электрогидродинамическими (ЭГД) явлениями, известными под названием «электрический (или «ионный») ветер», которые позволяют как измерять подвижность газовых ионов [8], так и создавать различные преобразователи энергии, ЭГД генераторы, ЭГД насосы [15] и т.п. Несмотря на то, что коронный разряд изучается на протяжении многих десятилетий, исследования в этой области не потеряли своей актуальности и сегодня. Одним из основных вопросов, с которым приходится сталкиваться при этом, являются вольт-амперные характеристики – зависимости тока коронного разряда І от величины приложенного напряжения U. В этом плане в предлагаемой работе анализируются ВАХ коронного разряда в гелии, синтетическом и обычном воздухе под углом зрения их критериального обобщения в целях проведения в последующем необходимых инженерных расчетов. Обсуждаются вопросы подобия коронных разрядов под аспектом их практического применения.

ОБЩАЯ СХЕМА МЕТОДА

Типичные вольт-амперные характеристики коронного разряда I(U) в газах описываются уравнением вида [8, 9, 16–18]:

$$I = A \cdot U(U - U_c), \tag{1}$$

где A и U_c – параметры характеристики, причем U_c – начальное (критическое) напряжение зажигания коронного разряда. В работе [19] приводится общая схема обобщения этих характеристик, суть которого состоит в том, что семейство кривых I, отличающихся указанными параметрами, сводится к одной зависимости, представленной единой формулой и единым графиком. В отличие от метода «редуцированных» характеристик [8, 9, 16–18], параметры A и U_c находятся статистическим методом наименьших квадратов (МНК):

$$A = \frac{\overline{I} - \overline{U} \cdot \overline{(I/U)}}{\overline{U^2} - \overline{U^2}}; \ U_c = \frac{\overline{U} \cdot \overline{I} - \overline{U^2} \cdot \overline{(I/U)}}{\overline{I} - \overline{U} \cdot \overline{(I/U)}}, \quad (2)$$

где черта означает средние арифметические значения, определяемые по эмпирическим рядам распределения.

Введя безразмерные напряжение *U*^{*} и ток *I*^{*} согласно формулам

$$U_* \equiv U/U_c; I_* \equiv I/I_0,$$
 (3)

где в качестве масштаба для силы тока (единицы измерения) принято

$$I_0 \equiv A \cdot U_c^2, \tag{4}$$

зависимости (1) придаем безразмерный, единый для всех ВАХ, вид уравнений параболы или биссектрисы:

$$I_* = U_* \cdot (U_* - 1) \Longrightarrow Y_* = U_*, \tag{5}$$

причем во втором случае через Y_* обозначено выражение, откладываемое на ось ординат и имеющее смысл обобщенной (безразмерной) редуцированной характеристики:

$$Y_* \equiv (I_* / U_*) + 1. \tag{6}$$

Независимая безразмерная переменная заключена в пределах:

$$1 \le U_* \le U_{*k}, \ U_{*k} \equiv U_k / U_c,$$
 (7)

а звездочки (*) означают безразмерные величины. В формуле (7) введено обозначение U_{κ} для «конечного» на данной характеристике значения напряжения, а $U_{*\kappa}$ представляет собой верхний предел области задания функций (5). Из соображений стабильности протекания разрядного процесса должно соблюдаться условие $U_{\kappa} \leq U_{u}$ предельно допустимого значения, не превышающего напряжения искрового пробоя (U_{u}) [11].

Откладывая на оси координат U_* и Y_* , согласно выражениям (5) и (6), получаем ВАХ в виде отрезков параболы или биссектрисы для всех газов и систем электродов, в которых коронный разряд описывается зависимостью (1). В дальнейшем ограничимся рассмотрением зависимости в виде биссектрисы, график которой исходит из точки с координатами (1; 1) и заканчивается точкой ($U_{*\kappa}$; $U_{*\kappa}$).

Согласно предложенной методике, ранее [19] были обобщены 4 вольт-амперные характеристики для гелия из общего семейства 9 зависимостей при положительной полярности коронного разряда, комнатной температуре и различных давлениях (рис. 1). В этой работе предусматривается дальнейшее обобщение семейства ВАХ, в том числе вольт-амперных характеристик, снятых в синтетическом воздухе при различных давлениях, а также в обычном воздухе [17] при различных температурах.

ЧАСТНЫЕ ОБОБЩЕНИЯ

Ниже приводятся обобщенные данные для коронного разряда в электродной системе, включающей полый цилиндрический заземленный электрод, в котором расположены два коронирующих электрода, имеющих форму звездочки. Высоковольтные электроды установлены с интервалом друг относительно друга, равным диаметру коронирующего электрода. Межэлектродное расстояние между заземленным и коронирующими электродами составляет 15 мм. Коронный разряд зажигается на остриях звездочных электродов. Детальное описание экспериментальной установки и методики экспериментов приведено в [20].

На рис. 1а представлены графики экспериментальных вольт-амперных характеристик, полученных в гелии. В соответствии с формулами (2) найдены параметры A и U_c , затем с помощью формул (3), (4) и (6) определяются графики биссектрис (5). Полученные зависимости отличаются только обозначениями самих точек, а также координатами концов отрезков биссектрис $(U_{*\kappa}, Y_{*\kappa} = U_{*\kappa})$. Степень близости точек к прямой характеризует степень адекватности обобщения зависимости (1). Откладывая на ось абсцисс безразмерное напряжение U*, а на ось ординат – выражение (б), в соответствии с зависимостью (5) для экспериментальных кривых получаем график обобщенной зависимости, приведенный на рис. 1б.

Экспериментальные точки весьма плотно укладываются на биссектрису (5), что свидетельствует о хорошем описании данных эксперимента размерным уравнением (1) и эквивалентным ему безразмерным (5). На рис. 1а указаны параметры A, U_c и I_0 , по которым можно рассчитать интересующие нас величины тока коронного разряда по известному уравнению (1).

Рис. 1а. Исходные зависимости: гелий, положительная корона, различные давления.

Рис. 2а. Исходные зависимости: гелий, отрицательная корона, различные давления.

Рис. За. ВАХ: синтетический воздух, положительная корона, различные давления.

Аналогично обработаны экспериментальные ВАХ для гелия при отрицательной полярности приложенного напряжения для различных давлений газа. На рис. 2а даны исходные экспериментальные зависимости, а на рис. 26 – обобщенная.

В случае отрицательного коронного разряда ряд точек не ложится на расчетную зависимость. Заметен больший разброс экспериментальных точек и расчетных данных по сравнению со случаем положительной короны. Это может быть связано, в частности, с неустойчивым характером коронного разряда на начальных участках

Рис. 16. Обобщенная зависимость для рис.1а.

Рис. 26. Обобщенная зависимость для рис. 2а.

Рис. 36. Обобщенная зависимость для рис. За.

вольт-амперных зависимостей, что характерно для отрицательной короны в условиях катодной эмиссии электронов и их дальнейшего дрейфового движения к аноду через электроположительный газ, каковым является гелий.

Следующее обобщение относится к синтетическому воздуху при положительной короне, температуре $T = (22-35)^{\circ}$ С и различных давлениях. На рис. За представлены исходные, а на рис. 36 – обобщенные зависимости.

Аналогично на рис. 4а и 4б даются соответственно исходные и обобщенные характеристики для синтетического воздуха при отрицательной

Рис. 4а. ВАХ: синтетический воздух, отрицательная корона при различных давлениях.

Рис. 5а. ВАХ [17]: воздух, нормальное давление, положительная корона при различных температурах нагрева коронирующей проволоки.

Рис. 6а. ВАХ [17]: воздух, нормальное давление, отрицательная корона при различных температурах нагрева коронирующей проволоки.

короне, температуре $T = (22-35)^{\circ}$ С и различных давлениях. Во всех рассмотренных случаях имеется весьма удовлетворительное обобщение экспериментальных данных биссектрисой (5).

Рассмотрим пример практического применения результатов приведенных обобщений. Пусть в случае коронного разряда в гелии необходимо получить ток I = 0,2 мА при напряжении U = 5 кВ, а также найти характеристику, обеспе-

Рис. 4б. Обобщенная зависимость для рис. 4а.

Рис. 56. Обобщенная зависимость для рис. 5а.

Рис. 6б. Обобщенная зависимость для рис. 6а.

чивающую эти показатели. Задача сводится к нахождению параметров U_c и A. Считаем, например, что $U/U_c \equiv m = 2$. Следовательно, $U_c = 5/2 = 2,5$ кВ. Зная I, находим величину масштабной единицы для силы тока: $I_0 = I/[m(m-1)]$ = 0,2/2 = 0,1 мА. Далее, согласно (4), находим параметр $A = 0,1/2,5^2 = 0,016$ мА/кВ². Расчетная вольт-амперная характеристика имеет вид (ток измеряется в мА, напряжение – в кВ):

$$I = 0,016 \cdot U \cdot (U - 2,5)$$

Эта характеристика близка к первой слева на рис. 1а. Приняв значение напряжения U = 8 кВ, при том же значении m = 2 получим $U_c = 4$ кВ => $A = 0,1/4^2 = 0,00625$ (мА/кВ²) и характеристику

$$I = 0,00625 \cdot U \cdot (U - 4),$$

близкую ко второй слева на рис. 1а.

Следовательно, задавшись тремя параметрами *I*, *U* и *m*, по приведенной схеме можно рассчитать уравнение вольт-амперной характеристики, которая будет достаточно точно предсказывать экспериментальные данные.

ОТДЕЛЬНЫЙ СЛУЧАЙ

На рис. 5а и 6а даны вольт-амперные характеристики для воздуха при положительной и отрицательной короне соответственно и нормальном давлении в зависимости от температуры коронирующей проволоки в коаксиальной системе электродов [17]. На рис. 5б и 6б приведены обобщенные зависимости, построенные согласно изложенной выше методике. Для коаксиальной системы электродов, наряду с параметрами А, U_c и I₀, приводится и величина коэффициента подвижности ионов k, теоретически рассчитанная, исходя из соображений точного соблюдения формулы Таунсенда (8) (см. ниже), которую можно сопоставить с известными табличными значениями ($k \approx 2 \text{ см}^2/(\text{B}\cdot\text{c})$). Сравнение экспериментальных и расчетных кривых показывает, что обобщения биссектрисой можно считать удовлетворительными. Однако эти эксперименты отличаются тем, что параметр А для коаксиальной системы электродов, в отличие от ранее рассмотренной, может быть рассчитан теоретически, исходя из формулы Таунсенда [16]:

$$I = \frac{8\pi\varepsilon_0 \cdot \varepsilon k \cdot U(U - U_c)}{R^2 \cdot \ln(R / r_0)} \Longrightarrow$$

$$\Rightarrow A = \frac{8\pi\varepsilon_0}{R^2 \ln(R / r_0)} \cdot \varepsilon k \equiv \alpha_0 \cdot \varepsilon k,$$
(8)

где

$$\alpha_0 \equiv \frac{8\pi\varepsilon_0}{R^2 \ln(R/r_0)}.$$
(9)

Параметр A с точностью до постоянной α_0 , зависящей от геометрии системы электродов, определяется произведением относительной диэлектрической проницаемости ε на подвижность активных ионов k (знака коронирующего электрода). Согласно [17], радиусы цилиндрических электродов составляют: R = 28,5 мм и $r_0 = 0,1$ мм; $\varepsilon_0 \approx 8,85 \cdot 10^{-12}$ Ф/м, следовательно, константа $\alpha_0 \approx 4,84 \cdot 10^{-8}$ Ф/м³. С другой стороны,

значения A известны из обработки ВАХ (см., например, таблицы к рис. 5а и ба), а это значит, что по последней формуле (8) можно косвенным путем найти произведение εk . Полагая для воздуха $\varepsilon \approx 1$, находим

$$\varepsilon k = A / \alpha_0 \approx k. \tag{10}$$

По этой формуле рассчитаны значения подвижностей ионов при коронном разряде в воздухе и, как следует из полученных результатов (таблицы рис. 5а и рис. 6а), расхождения между данными по формуле (10) и известными значениями подвижностей ионов в воздухе при коронном разряде ~ 2 см²/(В·с) [16] весьма существенны. Следовательно, коэффициент εk в формуле Таунсенда (8) носит эмпирический характер, требующий дополнительных уточнений. Однако эти несоответствия для рассматриваемых обобщений не имеют особого значения, поскольку параметр *А* рассчитывается непосредственно по исходным ВАХ без привлечения указанного коэффициента.

Экспериментальные данные не всегда одинаково успешно обобщаются универсальными зависимостями (5) и (6). Но практически во всех случаях соблюдается математическая структура закономерности (1), что служит основанием для ее широкого использования.

О ПОДОБИИ КОРОННЫХ РАЗРЯДОВ И ЕГО ПРИМЕНЕНИИ

Анализ вольт-амперных характеристик предопределяет постановку вопроса относительно возможности расчета параметров различных ВАХ на основе ограниченного числа экспериментальных данных. С позиций методов подобия такого рода задачи представляются решаемыми, и мы кратко остановимся на этом.

Основными критериальными уравнениями подобия коронных разрядов являются уравнения (5), инвариантные относительно вольт-амперных характеристик. В качестве определяющего критерия подобия здесь выступает

$$U_* \equiv U/U_c = \text{idem},\tag{11}$$

а определяемого –

$$Y_* \Longrightarrow I_* \equiv I / I_0 = \text{idem.}$$
 (12)

На основании этих соотношений можно получить другие выражения, например отношение размерных токов:

$$\frac{I^{(2)}}{I^{(1)}} = \frac{I^{(2)}_0 \cdot U^{(2)}_* \cdot (U^{(2)}_* - 1)}{I^{(1)}_0 \cdot U^{(1)}_* \cdot (U^{(1)}_* - 1)}.$$
 (13)

Если точки «(1)» и «(2)» принадлежат одной и той же характеристике, то формула (13) представляет собой обычное отношение токов в пределах рассматриваемой характеристики. Однако если точки относятся к различным характеристикам, то ситуация меняется. Например, для двух подобных безразмерных напряжений $U_*^{(1)} = U_*^{(2)}$ размерные токи второй характеристики в $I_0^{(2)} / I_0^{(1)}$ раз больше, чем для первой:

$$I^{(2)} = \frac{I_{(0)}^{(2)}}{I_0^{(1)}} \cdot I^{(1)}.$$
 (14)

Так, согласно таблице рис. 1а, для первых двух характеристик по формуле (14) имеем

$$I^{(2)} = (0, 11/0, 09) \cdot I^{(1)} = 1, 22 \cdot I^{(1)}$$

для любой пары безразмерных напряжений $(U_*^{(1)} = U_*^{(2)}).$

Пусть далее для подобных напряжений ток второй характеристики в *m* раз больше, чем первой:

$$I^{(2)}/I^{(1)} = m. (15)$$

Тогда из (14) с учетом явных выражений (4) для масштабных токов получим соотношение между параметрами ВАХ:

$$A^{(2)} = m \cdot A^{(1)} \cdot [U_c^{(1)} / U_c^{(2)}]^2.$$
 (16)

Следовательно, зная одну из характеристик, то есть ее параметры $(A^{(1)}, U_c^{(1)})$, и один из параметров второй ВАХ $(U_c^{(2)})$, можно найти другой параметр неизвестной вольт-амперной характеристики $(A^{(2)})$. В свою очередь основные параметры ВАХ $(A \ u \ U_c)$ зависят от геометрических размеров системы электродов, давления, температуры и других величин, учитывая которые с помощью (16), можно установить новые соотношения.

В заключение заметим, что для подобия двух процессов коронного разряда необходимо равенство попарно всех критериев подобия, начиная с геометрических симплексов типа R/r_0 = idem, и т.д. В этой связи возникает вопрос, а не следует ли отнести симплекс U_i/U_c , где U_i – напряжение искрового пробоя межэлектродного промежутка, к совокупности критериев подобия коронного разряда. И тогда симплекс в виде U_i/U_c = idem может привести к новым закономерностям. Анализ таких возможностей является предметом дальнейших исследований.

Авторы выражают благодарность Klaus Woletz (Karlsruhe Institute of Technology) за плодотворное участие в проведении экспериментальных исследований.

Работа выполнена при финансовой поддержке по двустороннему проекту ASM–BMBF: ASM: 13.823.15.09/GA, Институциональному проекту: 11.817.05.04A и BMBF:FKZ-Nr. 01DK13014.

ЛИТЕРАТУРА

- 1. Haidara M., Denat A., Atten P., Corona Discharge in High Pressure Air. *J Electrostat*. 1997, **40–41**, 61–66.
- Bologa A., Paur H.-R. Corona Discharge in Gaseous Phase – Study and Applications. Abstracts of the 6th International Conference on Materials Science and Condensed matter Physics, 11–14 September 2012, Chisinau, Moldova, p. 258.
- Stano M., Safonov E., Kučera M., Matejčík Š.T. Ion Mobility Spectrometry Study of Negative Corona Discharge in Oxygen/Nitrogen Mixtures. *Chemicke Listy*. 2008, **102**, s1414–s1417.
- Bonifaci N., Denat A., Malraison B. Determination of Charge Mobility in He Gas from Current-Voltage Measurements in Point-Plane Geometry. *IEEE Transactions on Industry Applications*. 2001, 37(6), 1634–1640.
- 5. Wang Q., Economou D.J., Donnelly V.M. Simulation of a Direct Current Microplasma Discharge in Helium at Atmospheric Pressure. *J Appl Phys.* 2006, **100**, 023301.
- Zhang J., Adamiak K., Castle G.S.P. Numerical Modeling of Negative-Corona Discharge in Oxygen under Different Pressures. *J Electrostat.* 2007, 65, 174–181.
- Abdel-Salam M., Allen N.L. Current-Voltage Characteristics of Corona in Rod-Plane Gaps as Influenced by Temperature. *IEE Proceedings – Science, Measurement and Technology*. 2003, **150**(3), 135–139.
- 8. Леб Л. Основные процессы электрических разрядов в газах. Москва–Ленинград: Госиздат техникотеоретической литературы, 1950. 672 с.
- 9. Верещагин И.П. Коронный разряд в аппаратах электронно-ионной технологии. М.: Энергоатом-издат, 1985. 160 с.
- Salvermoser M., Murnick D.E. Efficient, Stable, Corona Discharge 172 nm Xenon Excimer Light Source. J Appl Phys. 2003, 94(6), 3722.
- Lo Shui-Yin, Lobo Julio D., Blumberg Seth, Dibble, Theodore S., Zhang Hu, Tsao Chun-Cheng, Okumura Mitchio. Generation of Energetic He Atom Beams by a Pulsed Positive Corona Discharge. J Appl Phys. 1997, 81(9), 5896–5905.
- Болога М.К., Гросу Ф.П., Кожухарь И.А. Электроконвекция и теплообмен. Кишинев: Штиинца, 1977. 320 с.
- Bologa M.K., Grosu F.P., Kozhevnikov I.V., Polikarpov A.A., Mardarskii O.I. Characteristics of an Electrohydrodynamic Pump. *Surf Eng Appl Electrochem*. 2014, **50**(5), 414–418.
- 14. Рубашов И.Б., Бортников Н.С. Электрогазодинамика. М.: Атомиздат, 1971. 219 с.
- 15. Денисов А.А., Нагорный В.С. Электрогидро- и электрогазодинамические устройства автоматики. Л.: Машиностроение, 1979. 288 с.
- 16. Райзер Ю.П. *Физика газового разряда*. М.: Наука, 1992. 536 с.

- 17. Токарев А.В. Коронный разряд и его применение. Бишкек. КРСУ, 2009. 138 с.
- 18. Капцов Н.А. Коронный разряд и его применение в электрофильтрах. М.: Огиз, 1947. 227 с.
- Grosu F.P., Bologa An.M., Paur H.-R., Bologa M.K., Motorin O.V. Generalization of the Townsend Current-Voltage Characteristics of a Corona Discharge. *Surf Eng Appl Electrochem.* 2014, **50**(4), 306–310.
- Bologa An., Paur H.-R., Seifert H., Woletz K. Influence of Gas Composition, Temperature and Pressure on Corona Discharge Characteristics. *Int J Plasma Environmental Science & Technology*. 2011, 5(2), 110–116.

Поступила 21.05.14 После доработки 05.02.15

Summary

Generalizations of the experimental current-voltage characteristics of corona discharge for helium and the synthetic air at positive and negative polarities of the discharge electrode of a complex star-shaped form at different gas pressures are presented. Analogous generalizations are carried out for current-voltage characteristics obtained for the dried air and a coaxial system of electrodes at various temperatures and the atmospheric pressure. The generalization consists in reducing the family of current-voltage characteristics to a single generalized equation which geometrically represents a segment bisector. Some aspects of application of similarity methods at corona discharge are considered. Townsend's structure of characteristics is confirmed and this fact can serve as a prerequisite for its wide application.

Keywords: corona discharge, current-voltage characteristics, helium, air, generalization, similarity criteria.