Влияние уровня низковольтной проводимости на структуру сквозного электрогидродинамического течения в симметричной системе электродов

И. А. Ашихмин, Ю. К. Стишков

НОЦ «Электрофизика», Физический факультет, Санкт-Петербургский государственный университет, ул. Ульяновская, 3, г. Санкт-Петербург, 198504, Россия, e-mail: <u>stishkov@paloma.spbu.ru</u>

Представлены результаты численного моделирования сквозного электрогидродинамического (ЭГД) течения в симметричной системе электродов, помещенных в канал с диэлектрическими стенками и заполненный жидким диэлектриком. На базе этой модели исследуется изменение структуры сквозного течения при разных значениях уровня низковольтной проводимости диэлектрической жидкости. Анализ полученных решений показал, что при проводимостия до 10^{-11} См/м структура течений практически не отличается от случая нулевой проводимости. При бо́льших значениях низковольтной проводимости усиливается рекомбинация заряда в приэлектродных диссоциационно-рекомбинационных слоях, что приводит к уменьшению проникновения инжектируемого заряда в объем и реорганизации кинематики возникающего сквозного ЭГД-течения, выражающейся в смещении зоны ускорения к активному электроду.

Ключевые слова: компьютерное моделирование, ЭГД-течения, низковольтная проводимость, инжекция заряда, сквозное течение.

УДК 53.072, 53.072.127, 621.371.329

ВВЕДЕНИЕ

В [1-2] рассматривались результаты моделирования сквозного электрогидродинамического (ЭГД) течения в симметричной системе электродов типа провод-провод при биполярной инжекции ионов в непроводящую жидкость в канале, то есть в жидкость с нулевой начальной проводимостью. Показано, что так называемое сквозное ЭГД-течение возникает при сбалансированных уровнях инжекции на активном и пассивном электродах. В этой модели ионы в жидкости появляются только за счет инжекции на каждом из электродов. Симметричная система электродов позволяет наиболее просто исследовать инжекционный механизм образования заряда и его влияние на структуру ЭГД-течений, так как начальные условия для инжекции с каждого из электродов одинаковы. Однако все реальные диэлектрические жидкости имеют некоторую начальную низковольтную проводимость, обусловленную термической диссоциацией примесных молекул или ионных пар. При введении в жидкость примесей, увеличивающих интенсивность инжекции, например обладающих электронно-акцепторными свойствами, возрастает не только интенсивность последней. Под действием термической диссоциации введенных примесных молекул увеличивается и низковольтная проводимость исходной жидкости [3]. Так, например, введение 10% бутанола в трансформаторное масло увеличивает его низковольтную проводимость на два порядка, до уровня 100 пкСм/м. Как показали систематические экспериментальные исследования в системе электродов проводпровод [4], в этой смеси обычно наблюдается устойчивое сквозное ЭГД-течение. Увеличение концентрации примеси до 20% и более на два порядка повышает низковольтную проводимость смеси, при этом эффект сквозной прокачки падает и вновь возникают встречные течения [3]. В настоящей работе на основе численного решения полной системы ЭГД-уравнений и анализа результатов решения этот эффект находит объяснение. При инжекции в жидкость с конечным уровнем собственной проводимости в приэлектродной области возникают встречные потоки разнополярных ионов. При этом существенную роль играет эффект рекомбинации. Как отмечалось в [5], в жидкостях с повышенной низковольтной проводимостью инжекция может оказаться неэффективной, так как ее поверхностные токи будут подавляться встречными токами объемной диссоциации. Это происходит в случае рекомбинации встречных разнополярных ионных потоков в приэлектродных областях. В жидкости возникают т.н. диссоциационно-рекомбинационные слои (ДРС) [5], в результате рекомбинации с ионами низковольтной проводимости плотность объемного заряда, проникающего с электрода в жидкость, существенно спадает, спадает также и интенсивность возникающих в жидкости ЭГД-течений.

В данной работе рассматривается модель инжекции в жидкость с конечной начальной проводимостью, причем значение последней в различ-

примерах варьируется диапазоне ных В 1-100 пкСм/м. Этот диапазон выбран не случайно, а исходя из результатов опубликованных ранее [3], именно в этом диапазоне проводимостей в симметричной системе электродов, помещенных в кювету размерами 2,4х10х10 см, происходит переход от режима сквозного течения к режиму встречных течений. Поскольку для прикладных целей [6, 7] представляет интерес использование режима сквозного течения, то в данной работе рассматривается модель ЭГДпреобразователя в канале размерами 1,5х3 см.

Исследования начнем с относительно малого уровня проводимости, равного 10 пкСм/м. Как и в работе [2], решается полная система уравнений электрогидродинамики. Соотношение уровней инжекции на активном и пассивном электродах зададим 2:1, напряжение 20 кВ.

ОПИСАНИЕ МОДЕЛИ

В данной работе представлены результаты расчетов, выполненных в пакете Comsol Multiphysics[®] 3.5. Подробно расчетная модель без учета проводимости обсуждается в работах [1–2, 8]. Рассмотрим отдельные модификации, внесенные в модель для того, чтобы учесть проводимость рассматриваемой среды. Система уравнений электрогидродинамики, позволяющая смоделировать этот класс задач, имеет вид:

$$\gamma \frac{\partial \vec{\upsilon}}{\partial t} + \gamma (\vec{\upsilon}, \nabla) \vec{\upsilon} = -\nabla p + \eta \Delta \vec{\upsilon} - \rho \nabla \varphi, \qquad (1)$$

$$\nabla \cdot \vec{\upsilon} = 0, \tag{2}$$

$$\Delta \varphi = -\frac{\rho}{\varepsilon \varepsilon_0},\tag{3}$$

$$\frac{\partial c_1}{\partial t} + \nabla \cdot \left(-D\nabla c_1 - z_1 bF c_1 \nabla \phi \right) +$$

$$+ \vec{\upsilon} \cdot \nabla c_1 = g(c_1, c_2, \phi),$$
(4)

$$\frac{\partial c_2}{\partial t} + \nabla \cdot \left(-D\nabla c_2 - z_2 bF c_2 \nabla \phi \right) +$$

+ $\vec{v} \cdot \nabla c_2 = g(c_1, c_2, \phi),$ (5)

где $\gamma = 800 \text{ кг/м}^3$ — плотность вещества; $\eta = 0,01 \text{ Па·с}$ — динамическая вязкость; $\rho = F \cdot (z_1c_1 + z_2c_2)$ — плотность электрического заряда; $F = \text{Na} \cdot e$ — константа Фарадея; $\varepsilon = 2,2$ относительная диэлектрическая проницаемость; $\varepsilon_0 = 8,854 \cdot 10^{-12} \text{ Ф/м}$ — электрическая постоянная; $z_1 = 1, z_2 = -1$ — зарядовые числа для положительных и отрицательных ионов соответственно; $b = 10^{-8} \text{ м}^2/(\text{B·c})$ — подвижность носителей заряда; $D = bk_BT/e$ — коэффициент диффузии; $k_B = 1,38 \cdot 10^{-23} \text{ Дж/K}$ — постоянная Больцмана; T = 300 K — температура; $e = 1,6 \cdot 10^{-19} \text{ Кл}$ — заряд электрона. Параметры модели выбирались соответствующими трансформаторному маслу из справочника [9]. В результате расчета модели мы получаем распределения следующих величин: \vec{v} – скорость течения жидкости; p – давление; ϕ – потенциал электрического поля; c_1 , c_2 – концентрации положительных и отрицательных ионов соответственно.

Отличительной особенностью этой системы уравнений является то, что в уравнениях Нернста–Планка для положительных и отрицательных ионов (4)–(5) вводится функция источника по формуле [10]:

$$g(c_1, c_2, \varphi) = \frac{\sigma_0^2}{2\varepsilon\varepsilon_0 b} - \frac{2b}{\varepsilon\varepsilon_0} zFc_1c_2, \qquad (6)$$

где σ_0 – электрическая проводимость.

В начальный момент времени мы задаем равномерное распределение концентрации положительных и отрицательных ионов по формуле $c_1^0 = c_2^0 = \sigma_0 / (2bF)$. При таком значении начальной концентрации при отсутствии электрического поля функция источника будет равна нулю, поскольку процессы рекомбинации и термической диссоциации молекул уравновешивают друг друга.

Напомним, что ток инжекции задавался по формуле Шоттки [11]:

$$\vec{J} = A \exp\left(\sqrt{\frac{e^3 \left|\nabla\varphi\right|}{4\pi\varepsilon\varepsilon_0 k_B^2 T^2}}\right) \cdot \vec{n}.$$
(7)

Здесь множитель A является параметром исследования и определяет инжекционную способность электрода. При начальном уровне проводимости $A = 2,5 \cdot 10^{-10}$ A/m². В отличие от работы [2] инжекция задавалась со всей поверхности активного электрода.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Рассмотрим для начала результаты моделирования для наименьшей проводимости $\sigma_0 = 10^{-11}$ См/м. Распределения плотности электрического заряда и поля скоростей в стационарном режиме имеют вид, приведенный на рис. 1. Как видно из рисунка, структура зарядовых струй и скоростная структура возникающих ЭГД-течений практически не отличаются от случая инжекции в непроводящую жидкость [1, 2]. После включения напряжения от активного электрода распространяется положительно заряженная струйка, формирующая в установившемся режиме за активным электродом вафлеобразную заряженную структуру (рис. 1а). Спад плотности заряда вдоль струйки невелик. Линия уровня

Рис. 1. Распределение плотности электрического заряда на фоне силовых линий электрического поля (а) и линии тока жидкости, а также линии уровня скорости ЭГД-течения (б) в жидкости с низковольтной проводимостью 10 пкСим/м.

плотности 0,03 простирается от активного электрода к пассивному и доходит до противоэлектрода, формируя границу заряженной струйки, толщина которой однородна вдоль межэлектродного промежутка. Как видно из структуры линий тока и линий уровня скорости (рис. 1б), это обеспечивает устойчивое сквозное ЭГД-течение в канале, причем зона ускорения течения достигает 0,7–0,8 длины межэлектродного промежутка (МЭП), а за пассивным электродом имеется небольшая вторичная зона ускорения.

Несмотря на то что распределения плотности заряда и скорости практически идентичны тем, которые были получены для инжекции в непроводящую жидкость, при данном уровне проводимости мы можем увидеть различия на амперсекундных характеристиках (АСХ) рис. 2. На этих графиках приведены зависимости плотности тока инжекции с электрода (сплошная линия) и встречного тока проводимости (штриховая) для активного (а) и пассивного (б) электродов.

На рис. 2 приведены ампер-секундные характеристики: зависимости от времени токов инжекции и проводимости с активного (рис. 2а) и пассивного (рис. 2б) электродов. На этапах формирования приэлектродного слоя и развития ЭГД-течения (0,1 с) имеет место спад тока инжекции у активного и пассивного электродов, связанный с накоплением гомозаряда в приэлектродных областях и центральной струе ЭГДтечения. Далее на пассивном электроде наблюдается рост тока инжекции, обусловленный тем, что с активного электрода начинает распространяться струйка положительного заряда, которая усиливает поле на этом электроде. В это же время ток проводимости на активном электроде спадает практически до нуля. Это объясняется тем, что вокруг электрода формируется заряженная область, в которой рекомбинируют заряды противоположного знака, не успевая дойти до поверхности электрода. На пассивном электроде, наоборот, в момент касания фронта заряженной струи происходит резкий скачок тока гибели положительных ионов, который впоследствии выходит на стационарное значение.

После прохождения заряженного фронта ток инжекции с активного электрода немного увеличивается, так как в канале формируется сквозное течение, ускоряющее процесс конвективного отвода заряда. С пассивного электрода, напротив, ток инжекции при выходе на стационар спадает, так как после прохождения заряженного фронта заряд, сформированный в струе, меньше, чем тот, который был на фронте, следовательно, уменьшаются усиление поля в приэлектродной области и ток.

Поскольку уровень низковольтной проводимости в рассматриваемом случае мал, то плотности токов инжекции на активном электроде существенно больше плотности встречных токов низковольтной проводимости. Поэтому интенсивность рекомбинации у активного электрода незначительна, и практически весь инжектируемый заряд поступает в центральную струю ЭГДтечения и переносится к противоэлектроду и далее в заэлектродную область. Заряд, инжектируемый с отрицательного пассивного электрода, также проникает в жидкость и сносится в заэлектродную область, образуя там вафлеобразную биполярную зарядовую структуру, в пределах которой идет интенсивная рекомбинация встречных разнополярных потоков. Это хорошо видно из распределения интенсивности рекомбинации на рис. 2в.

Рассмотрим случай повышенной проводимости 10⁻¹⁰ См/м, в частности графики распределения плотности электрического заряда и скорости.

Из этих графиков видно (рис. 3), что при проводимости 100 пкСм/м картина формирования течений имеет существенные отличия от случая инжекции в менее проводящую жидкость. С активного электрода к противоэлектроду, как и в предыдущем случае, распространяется заряженная струйка (рис. 3а), однако плотность заряда в ней спадает значительно быстрее, а за пассивным электродом струйка отрицательного заряда практически отсутствует. Поэтому на графике распределения скоростей (рис. 3б) зона ускорения расположена несколько ближе к активному электроду, а за пассивным электродом зона вторич-

Рис. 2. Ампер-секундные характеристики (ACX) активного (а) и пассивного (б) электродов; (в) – линии уровня интенсивности рекомбинации в жидкости с проводимостью 10 пкСм/м.

Рис. 3. Распределение плотности электрического заряда на фоне силовых линий электрического поля (а) и линии тока жидкости, а также линии уровня скорости ЭГД-течения (б) в жидкости с низковольтной проводимостью 100 пкСим/м.

ного ускорения жидкости практически отсутствует. Это приводит к уменьшению средней скорости сквозной прокачки жидкости.

Посмотрим. что происходит с амперсекундными характеристиками и интенсивностью рекомбинации при повышенном уровне низковольтной проводимости (рис. 4). На активном электроде (рис. 4а) картина в целом повторяет ту, которая была получена для меньшей проводимости (рис. 2а). Здесь мы также видим, что ток инжекции спадает со временем из-за образования гомозаряженных слоев вблизи электрода. При этом начальный уровень тока проводимости (штриховая линия) больше, чем в предыдущем случае, на порядок. Как и в предыдущем случае, ток проводимости со временем уменьшается очень значительно (около трех раз), так как вблизи активного электрода (рис. 4в) находится зона интенсивной рекомбинации ионов, благодаря чему они рекомбинируют с ионами, инжектируемыми с активного электрода, не дойдя до поверхности электрода. Однако плотность тока инжекции спадает не столь существенно, всего на 35%, так как уровень начальной проводимости еще недостаточен.

Для пассивного же электрода (рис. 4б) картина ACX сильно отличается от случая проводимости 10 пкСм/м. Здесь мы видим, что начальное значение тока инжекции практически совпадает с предыдущим случаем, но ток проводимости больше на порядок. Таким образом, в начальный момент вблизи пассивного электрода начинает формироваться кольцо заряда противоположного знака. Это приводит к тому, что с электрода усиливается ток инжекции, который к моменту прихода заряженного фронта с активного электрода

55

Рис. 4. Ампер-секундные характеристики активного (а) и пассивного (б) электродов; (в) – линии уровня интенсивности рекомбинации в жидкости с проводимостью 100 пкСм/м.

успевает сравняться с током проводимости. В результате мы видим, что за пассивным электродом образуется нехарактерный для сквозного течения биполярный приэлектродный ДРС, при котором отрицательный заряд локализуется в небольшой области порядка нескольких радиусов электрода и не сносится в заэлектродную область. Это в конечном итоге ослабляет интенсивность сквозного течения.

Для исследования сквозного ЭГД-течения в жидкостях с еще более высоким уровнем низковольтной проводимости необходимо повысить начальный уровень инжекции на обоих электродах. В противном случае, как показывают результаты моделирования, плотность тока инжекции окажется существенно ниже плотности встречного тока низковольтной проводимости и инжектируемый заряд не проникнет в объем жидкости, а погибнет в приэлектродном слое за счет рекомбинации. При этом в жидкости возникают слабые четырехъячеистые течения, направленные на электроды.

На рис. 5 приведено распределение объемного заряда и уровней скорости в жидкости с проводимостью 10⁻⁹ См/м. Расчет проведен для случая повышенной (в 8 раз) инжекции и соотношения (3:2) токов инжекции с активного и пассивного электродов. При этом ток инжекции вновь доминирует над током проводимости на обоих электродах (рис. 6).

Видно, что вокруг обоих электродов, как и в предыдущих случаях, формируются области, заряженные одноименно с электродом, однако плотность заряда очень быстро спадает из-за рекомбинации с ионами, обеспечивающими низковольтную проводимость. Поэтому глубина проникновения заряженных струек в объем жидкости невелика, струйка положительного заряда не достигает противоэлектрода. Тем не менее за активным и пассивным электродами имеются небольшие области ускорения жидкости, обеспечивающие сквозное течение в канале. Отличительной особенностью течения при низковольтной проводимости 10-9 См/м является то, что область локализации положительного заряда, инжектированного с активного электрода, уже не успевает распространиться до пассивного электрода, так как в объеме жидкости происходит интенсивная рекомбинация (рис. 6в) с ионами, образованными за счет термической диссоциации молекул. Поэтому за областью ускорения, занимающей менее 0,3 длины межэлектродного промежутка, находится область торможения, которая простирается до противоэлектрода, а затем

56

Рис. 5. Распределение плотности электрического заряда на фоне силовых линий электрического поля (слева) и линии тока жидкости, а также линии уровня скорости ЭГД-течения (справа) в жидкости с низковольтной проводимостью 1 нСм/м.

Рис. 6. Ампер-секундные характеристики активного (а) и пассивного (б) электродов; (в) – линии уровня интенсивности рекомбинации в жидкости с проводимостью 1 нкСм/м.

располагается вторичная короткая область ускорения. По этим признакам можно утверждать, что сквозное течение в жидкостях повышенной проводимости вырождается.

Следует отметить, что рекомбинационный эффект существенно повышает затраты энергии на джоулев нагрев, при этом итоговая скорость сквозного ЭГД-течения, несмотря на повышенный уровень инжекции, понижается. При меньшем соотношении уровней инжекции на электродах (например, 1:1) в жидкости с проводимостью 1 нСм/м вновь появляются два встречных вихря, что и было зарегистрировано в экспериментах [3].

При столь высоком уровне низковольтной проводимости ампер-секундные характеристики

на обоих электродах носят ниспадающий характер, время релаксации тока 0,01 сек, нет роста тока на пассивном электроде, а ток проводимости спадает до некоторого конечного уровня. Зоны рекомбинации у обоих электродов значительно меньше размеров межэлектродного промежутка, а ее интенсивность существенно выше. По сути, области рекомбинации характеризуют размеры рекомбинационных слоев. При еще большем уровне низковольтной проводимости глубина проникновения инжектируемого заряда в жидкость спадет до субмиллиметровых размеров, а ЭГД-течения локализуются в приэлектродной области в виде мелкомасштабных вихрей соответствующих масштабов без формирования сквозного течения.

ЗАКЛЮЧЕНИЕ

В симметричной системе электродов типа провод-провод, расположенных в канале с диэлектрическими стенками, сквозное течение возникает только в случае сбалансированного подбора функций инжекции с активного и пассивного электродов, приводящего к формированию биполярной зарядовой структуры за пассивным электродом. Причем, для того чтобы течение было стабильно и не реорганизовывалось со временем под действием объемного заряда, необходима строгая балансировка системы по токам инжекции. Эта балансировка должна обеспечить полную рекомбинацию ионных потоков с активного и пассивного электродов в заэлектродной области, и в канале не должен накапливаться электрический заряд.

Сквозное течение формируется только в жидкостях с невысоким уровнем низковольтной проводимости, до 1 нСм/м, когда размеры зоны рекомбинации сопоставимы с размерами межэлектродного промежутка. При инжекции в жидкость с повышенным уровнем низковольтной проводимости инжектированный заряд перестает проникать в объем жидкости из-за возникновения приэлектродных диссоциационно-рекомбинационных слоев, что приводит к вырождению режима сквозного течения. В жидкостях с повышенным уровнем низковольтной проводимости эффективность ЭГД-преобразования существенно падает вследствие повышения уровня джоулевых потерь.

ЛИТЕРАТУРА

- Ashikhmin I.A. and Stishkov Yu.K. Structural Features of EHD Flows in Wire–wire Symmetric Systems of Electrodes. *Surf Eng Appl Electrochem.* 2009, 45(6), 471–479.
- Ashikhmin I.A. and Stishkov Yu.K. Electrohydrodynamic Injection Converters. *Surf Eng Appl Electrochem.* 2012, 48(3), 268–275.
- 3. Стишков Ю.К., Остапенко А.А., Чистяков Н.А. ЭГД-течения в системе взаимно параллельных проволочек. *Магнитная гидродинамика*. 1982, (3), 79–82.

- 4. Стишков Ю.К., Остапенко А.А. Электрогидродинамические течения в жидких диэлектриках. Л.: ЛГУ, 1989. 174 с.
- Стишков Ю.К. Ионизационно-рекомбинационный механизм зарядообразования. ДАН СССР. 1986, 288(4), 861–865.
- Болога М.К., Гросу Ф.П., Кожухарь И.А. Электроконвекция и теплообмен. Кишинев: Штиинца, 1977. 320 с.
- 7. Болога М.К., Кожевников И.В. и др. Теплообмен при электрогидродинамических течениях. *Тепловые процессы в технике*. 2010, (11), 507–511.
- Ашихмин И.А., Стишков Ю.К. Моделирование динамической вольт-амперной характеристики в симметричной системе электродов в канале с низкопроводящей жидкостью. Сб. докл. Х Междунар. науч. конф. СПЭЭЖГ. Санкт-Петербург, 2012. С. 144–146.
- 9. Адамчевский И. Электрическая проводимость жидких диэлектриков. Л.: Энергия, 1972. 295 с.
- Стишков Ю.К., Чирков В.А. Формирование электрогидродинамических течений в сильнонеоднородных электрических полях при двух механизмах зарядообразования. *Журнал технической физики*. 2012, 82(1), 3–13.
- Жакин А.И. Приэлектродные и переходные процессы в жидких диэлектриках. УФН. 2006, 176(3), 289–310.

Поступила 22.02.13

Summary

This paper presents the results of numerical modeling through electrohydrodynamic (EHD) flow in a symmetric system of electrodes placed in the channel with dielectric walls and filled with liquid dielectric. Based on this model, under study are changes in the structure of a through flow at different levels of the low-voltage conductivity of the dielectric fluid. The analysis of the solutions shows that the flow structure with conductivities up to 10^{-11} S/m does not differ from the case of zero conductivity. Recombination of charge increases for large values of the low-voltage conductivity in the near electrode layers, which reduces the penetration of the injected charge in the bulk and reorganizes the kinematics arising EHD through flow, reflected in a shift of the acceleration zone to the active electrode.

Keywords: numerical simulation, EHD flow, low-voltage conductivity, ion-drag pumping, through flow.