Исследование β/γ-MnO₂ в композитных электродах с углеродными нанотрубками в редокс-реакции с литием в макетном аккумуляторе

Р. Д. Апостолова^а, Р. П. Песков^а, Е. М. Шембель^{а,b}

^аГВУЗ «Украинский государственный химико-технологический университет», пр. Гагарина, 8, г. Днепропетровск, 49005, Украина ^bКорпорация Энерайз, Флорида, США, e-mail: <u>shembel@onil.dp.ua</u>

Тонкослойные безбалластные MnO₂/Al-электроды без электронно-проводящей добавки и таковые в композиции с многостенными углеродными нанотрубками (MnO₂/Al-MУHT), а также объемные намазные электроды MnO₂, MУHT, Ф4/сталь 18H12X9T исследовали в редоксреакции с литием в макетном аккумуляторе с электролитами ПК, ДМЭ, 1M LiClO₄ и ЭК, ДМК, 1M LiClO₄. Окно электрохимической устойчивости на MnO₂, MУHT-Al/электроде в рабочей области потенциалов для указанных электролитов составляет 2,0–4,1 и 2,0–4,2 В соответственно. Из-за высокого контактного сопротивления между частицами тонкослойного β/γ -MnO₂/Al-электрода его разрядная емкость не превышает 110–120 мАч/г, однако она стабильна на протяжении 180 циклов. Обсуждается роль алюминиевого коллектора в преобразовании β/γ -MnO₂/Al-электрода. Разрядная емкость объемных MnO₂, MУHT, Ф4/18H12X9T-электродов в первом цикле может составлять 265–280 мАч/г, обратимая – 185–250 мАч/г в первых пятидесяти циклах. Сделана оценка значений коэффициента химической диффузии ионов лития D_{Li} в редокс-реакции MnO₂ с литием, установленных по методу медленной циклической вольтамперометрии в тонкослойном композитном MnO₂, MУHT/Al-электроде при потенциалах пиковых значений тока (порядка 10⁻¹² см²/с).

Ключевые слова: MnO₂, литиевый аккумулятор, многостенные углеродные нанотрубки, разрядная емкость, коэффициент химической диффузии лития, тонкослойный электрод.

УДК 541.136

Диоксид марганца MnO₂ широко используют в химических источниках тока, и он, благодаря невысокой стоимости и низкой токсичности, попрежнему остается объектом многочисленных исследований, конечной целью которых является серийное производство энергоемкого литиевого аккумулятора с разрядной емкостью, близкой к теоретической (308 мАч/г). Однако создание высокоэнергоемкого коммерческого аккумулятора тормозится из-за снижения разрядной емкости MnO₂ при длительном циклировании. Ряд исследований направлен на определение и подавление деградационных электродных процессов разных структурных форм MnO₂ в редокс-реакции с литием [1-5 и др.]. К сожалению, в большинстве из них удовлетворительные разрядные характеристики наблюдаются лишь в первых 10-20 циклах. Разнообразные типы структур MnO₂ определяют многообразие их электрохимических характеристик. Разрядная емкость ряда полиморфов MnO₂ в литиевом аккумуляторе разнится уже в первом цикле, мАч/г: α-MnO₂ – 150, α/β-MnO₂ – 230, (β-MnO₂ и r-MnO₂) – (260–270); кристаллический Li_{0.33}MnO₂ на основе у-MnO₂ в первом разряде отдает 194 мАч/г, в последующих 60 циклах – 155 мАч/г [6]. Модифицированный диоксид α-MnO2 способен обеспечить стабильную емкость 223 мАч/г на протяжении 20 циклов [7].

Перспективными представляются наноматериалы MnO_2 . По данным [8], α - MnO_2 -нанотрубки способны обеспечить в отрицательных электродах литий-ионных систем емкость 500 мАч/г при плотности тока 800 мА/г с удовлетворительной эффективностью циклирования. Заметного улучшения электрохимических характеристик MnO_2 в редокс-реакции с литием не всегда удается достигнуть. В наностержнях β - MnO_2 [9], где емкость в первом цикле при интеркаляции лития со скоростью 30 мА/г и конечном напряжении 1,5 В составляет 210 мАч/г, в последующем цикле она ограничивается величиной 150 мАч/г.

К числу недостатков диоксида марганца относится низкая электропроводность. В стремлении совершенствовать систему MnO_2/Li исследуют композиты MnO_2 с углеродными нанотрубками. В работе [10] такой композит в интервале напряжения 3,2–0 В отдает в первом разрядном процессе 2000 мАч/г, хотя уже в 15-м цикле разрядная емкость снижается до 500 мАч/г. Композиты оксидов марганца с углеродными наноматериалами все больше привлекают внимание исследователей и разработчиков литиевых аккуму-

© Апостолова Р.Д., Песков Р.П., Шембель Е.М., Электронная обработка материалов, 2014, 50(2), 25-34.

ляторов, и отдельные результаты с ними довольно оптимистичны [11].

Авторы данной работы, считая применение углеродных нанотрубок многообещающим [12], исследовали химически синтезированный диоксид марганца в композиции с многостенными углеродными нанотрубками (МУНТ) с целью улучшения его электрохимических характеристик в редокс-реакции с литием. В итоге удалось достигнуть повышения обратимой емкости и скоростных разрядных характеристик макетного литиевого аккумулятора на основе композита β/γ -MnO₂-MУНТ.

МЕТОДИКА ЭКСПЕРИМЕНТА

Исследуемый в работе исходный кристаллический диоксид марганца γ -MnO₂, полученный химическим окислением нитрата марганца, содержит 5,1 мас. % Mn₂O₃ (ТУ У 6–05761620.015– 2001, марка Б). Его удельная поверхность – не менее 20 м²/г, насыпная плотность – не менее 2,44 г/см³; использована фракция с размером частиц менее 40 мкм.

Тонкослойный электрод, условно названный MnO₂/Al, изготовлен механическим втиранием исходного продукта, синтезированного в соответствии с патентом Украины [13], в алюминиевую матрицу размером (1,0x1,0x0,1) см по методу [14]. Масса активного оксидно-марганцевого компонента в электроде – 0,18–0,20 мг/см², толщина активного слоя – 3600–4000 Å. Он не содержит балластных составляющих традиционного композитного электрода – электроннопроводящей добавки и связующего. Такой электрод является идеальным объектом для исследования механизмов электродных процессов, когда необходимы особо тонкие слои электродного «чистого» материала.

В качестве электронно-проводящей добавки в исследуемом электродном материале использовали МУНТ, синтезированные каталитическим пиролизом этилена [15]. Продукт пиролиза представляет собой черный порошок с насыпной плотностью 25–30 г/дм³. Внешний диаметр нанотрубок – около 10–30 нм, удельная поверхность – 230 м²/г.

Композитные тонкослойные электроды MnO₂, MУHT/Al были изготовлены механическим втиранием в алюминиевую матрицу смеси исходного MnO₂ и MУHT с соотношением компонентов 90:10 мас.%. Предварительно смесь перетирали в ступке. Масса композита в электроде составляет 0,5–0,8 мг/см².

Композитные объемные намазные электроды MnO₂, МУНТ, Ф4/18Н12Х9Т размером (1,0х1,0) см были изготовлены нанесением на сетку из нержавеющей стали 18Н12Х9Т актив-

ной массы 11–35 мг/см², состоящей из смеси исходного MnO₂, МУНТ и фторопластового связующего Ф4 (80:10:10 мас.%) в метилпирролидоне.

Электрохимические исследования проводили в 2-электродном макетном дисковом литиевом источнике тока в габаритах 2325 (в гальваностатическом разрядно-зарядном циклировании на испытательном стенде с программным обеспечением), а также в герметичной 3-электродной ячейке с литиевым противоэлектродом и Li/Li⁺электродом сравнения по методу медленной циклической вольтамперометрии с помощью аналитического радиометра VoltaLabPGZ 301.

Макетные аккумуляторы и экспериментальную ячейку заполняли электролитами следующего состава: пропиленкарбонат (ПК, Ангарский завод химреактивов), диметоксиэтан (ДМЭ, Merck), 1M LiClO₄ (йодобром), а также этиленкарбонат (ЭК, Merck), диметилкарбонат (ДМК, Merck), 1M LiClO₄. Содержание воды в электролитах не превышало 0,006% по методу К. Фишера. Сборку макетов и ячеек производили в перчаточном боксе в атмосфере сухого аргона.

Рентгенофазовый анализ выполнен на установке ДРОН-2. Микрофотографии поверхности образцов получены с помощью сканирующего электронного микроскопа РЭМ-106 И. Импедансные спектры – в частотном ряду 100 кГц–0,01 Гц при использовании VoltaLabPGZ 301.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Диоксид марганца β/γ -MnO₂ в композиции с графитом ЭУЗ-М (5%), ацетиленовой сажей (5%) и связующим Ф4 (5%) в объемных намазных электродах макетного литиевого аккумулятора обеспечивает разрядную емкость 175–155 мАч/г на протяжении 15 циклов при максимальной скорости разряда 80 мА/г. Для улучшения результатов в ходе данного исследования проведен анализ эффективности многократного электрохимического преобразования β/γ -MnO₂ в композиции с МУНТ в серии электродов: 1) тонкослойных: а) безбалластных MnO₂/Al, б) композитных MnO₂-MУНТ/Al и 2) объемных намазных MnO₂-MУНТ-Ф4/18Н12Х9Т.

Тонкослойные электроды MnO₂/Al без электронно-проводящей добавки

Перед изготовлением электродов исходный электродный материал активировали при 250°С (7 ч). После термообработки в его составе наряду с γ -MnO₂ и γ -Mn₂O₃ обнаружен β -MnO₂. На дифрактограмме (рис. 1) идентифицированы рефлексы оксидов: 1) γ -MnO₂ – 2,4; 2,1; 1,61; 1,42 (ASTM 14–644), 2) β -MnO₂ – 3,12; 1,42 (ASTM 12–716), 3) γ -Mn₂O₃ – 3,83; 1,83 (ASTM 18–803).

Рис. 1. Рентгеновская дифрактограмма исходного порошка оксидов марганца.

Микрофотография поверхности MnO₂/Alэлектрода (рис. 2) свидетельствует о том, что при механическом втирании MnO₂ в алюминиевую подложку включились частицы размером не выше 200 нм, которые распределены на поверхности подложки довольно равномерно.

Рис. 2. Микрофотография поверхности MnO₂/Al-электрода в СЭМ.

Первая часть электрохимического исследования проведена с использованием в макетной аккумуляторной системе электролита ПК, ДМЭ, 1M LiClO₄. Свежеизготовленный тонкослойный электрод MnO₂/Al сразу после погружения в электролит характеризуется потенциалом 3,63-3,70 В относительно Li/Li⁺-электрода. При выдерживании электрода в электролите (15 ч) его потенциал снижается до 2,67 В. Это объясняется разницей стационарных потенциалов активного материала (3,63-3,70 В) и алюминиевой подложки (2,40-2,50 В) в данном электролите. В результате релаксации потенциала MnO₂/Alэлектрода спустя 15 ч устанавливается компромиссный потенциал.

Обычно среднее разрядное напряжение диоксида марганца в объемном композитном электроде с графитом, ацетиленовой сажей и связующим Ф4 в редокс-реакции с литием находится на уровне 2,8-2,9 В. MnO₂/Al-электрод с потенциалом 2,67 В оказывается уже значительно разряженным. В первом цикле (рис. 3, кривая 1) разрядная емкость электрода составляет лишь 26 мАч/г. Электрод вначале заряжали до 3,60 В, поскольку принято считать, что выше этого значения на поверхности MnO₂ начинается анодное окисление электролита. При заряде до 3,60 В (рис. 3, кривая 1^{1}) MnO₂/Al-электрод получает и затем отдает около 40-45 мАч/г (рис. 3, кривая 2). При повышении зарядного напряжения нарастает зарядно-разрядная емкость. MnO₂/Al-электрод циклировали на протяжении 180 циклов в интервале (4,1-2,0) В с отдачей 108 мАч/г на 180-м цикле. При зарядном напряжении 4,3 В начинается разложение электролита.

Рис. 3. Разрядно-зарядные кривые электрода MnO_2/Al после выдерживания в электролите ПК, ДМЭ, 1M LiClO₄ (15 ч). Масса – 0,18 мг/см², $E_0 = 2,67$ В, $i_{pasp} = i_{заряд} = 5$ мкА/см². Цифры у кривых – номера циклов.

Электрод MnO₂/Al при заряде до 4,1 В не заряжается полностью до исходного состояния, поскольку некоторая доля зарядного напряжения тратится на преодоление омической составляющей сопротивления в электродном материале. По литературным данным, величина электронной проводимости MnO₂ находится в широком ряду – от 1 См·см⁻¹ для β-МпО₂ до проводимости диэлектрика для α-MnO₂. К сожалению, часто значения проводимости указывают в публикациях без разъяснения структуры MnO₂. По данным [16], оно равно 10^{-2} , в работе [17] – $(10^{-5}-10^{-6})$, в работе [18] – (0,2–2,0)·10⁻³ См·см⁻¹. Принимая в расчет минимально возможную проводимость из этих значений (10⁻⁶ См·см⁻¹), считаем, что омическое сопротивление пленки MnO2 толщиной 0,4 мкм на подложке из алюминия в данной ра-

боте оценивается величиной 40 Ом[•]см². Тогда падение напряжения в активном материале при токе 5 мкА/см² должно быть 2·10⁻⁴ В. Фактическая величина среднеразрядного напряжения MnO₂/Al-электрода (около 2,4 В) снижена по сравнению с таковой аналогичного электрода с МУНТ на 0.2–0,4 В. Очевидно, разница (0,2-0,4 В) связана с падением напряжения на высоком контактном сопротивлении между частицами электродного материала, а также частицами и подложкой MnO₂/Al-электрода. Нельзя исключить также возможное высокое сопротивление переноса зарядов через поверхность раздела электрод/электролит, снижающееся в контакте активных частиц MnO₂ с МУНТ.

Разрядно-зарядные характеристики свежеизготовленного электрода MnO₂/Al, который не был длительное время в соприкосновении с электролитом ПК, ДМЭ, 1M LiClO₄, существенно отличаются от характеристик, полученных с выдержанным в электролите электродом. Его разрядная емкость в первом цикле составляет 168 мАч/г (рис. 4, кривая *1*). Среднеразрядное напряжение этого электрода (2,4 В) ниже, чем среднеразрядное напряжение объемных композитных электродов с электронно-проводящими добавками (графит, сажа).

Рис. 4. Разрядно-зарядные характеристики свежеизготовленного электрода MnO_2/Al без длительного контакта с электролитом ПК, ДМЭ, 1М LiClO₄ в макетном Li-аккумуляторе: 1 – разрядная кривая в 1-м цикле; 2 – зарядная кривая в 1-м цикле; 3 – разрядная кривая во 2-м цикле. Масса – 0,185 мг/см², E_0 = 3,6 B, $i_{\text{разр}} = i_{\text{заряд}} = 5$ мкА/см².

Зарядный профиль этого электрода в интервале напряжения 2,00–3,60 В выглядит, как показано на рис. 4 (кривая 2). При заряжении до 3,6 В исходный потенциал электрода MnO₂/Al 3,67–3,70 В не достигается (рис. 4, кривая 2). Поэтому разрядная емкость следующего цикла снижается (рис. 4, кривая 3). По достижении напряжения 3,45 В в заряжении начинается стабильный окислительный процесс. Мы полагаем, что он связан с окислением электролита, образованием и трансформацией поверхностной пленки на алюминиевой подложке.

Алюминий и его сплавы коррозионноустойчивы в апротонной литийсодержащей среде [19]. В интервале 2,0-4,1 В на циклической вольтамперограмме алюминиевого электрода при скорости развертки потенциала 1.10⁻⁴ В/с в исследуемом электролите максимальная величина тока составляет десятки нА/см² и по достижении 4,3 В – 0,5 мкА/см². Оксидная пленка на алюминиевой подложке, образованная при анодной поляризации до 4,1 В, трансформируется при длительном контакте с электролитом ПК, ДМЭ, 1М LiClO₄. Значения реальной (Z^1) и мнимой (Z^{11}) составляющих импедансного спектра системы АІ/ПК, ДМЭ, 1М LiClO₄ возрастают при длительном контакте с электролитом. Годографы поверхности раздела Al/электролит в координатах Найквиста (Z^I – Z^{II}) имеют форму дуги. Экстраполяцией дуги до полусферы с пересечением оси Z^{I} получено значение, отнесенное к сопротивлению переноса зарядов через поверхность раздела Al/электролит ($R_{ct} = RT/nFSi_o$), и затем установлены значения тока обмена зарядов *i*₀. В системе без длительного контакта с электролитом $i_{o1} = 0,5 \cdot 10^{-6}$ А/см². При контакте длительностью 15 ч трансформация оксидной пленки приводит к снижению тока обмена на порядок $(i_{o2} = 0,7.10^{-7} \text{ A/cm}^2)$. Отличия в импедансных характеристиках оксидной пленки на алюминии коррелируют с разницей в электрохимическом поведении электрода MnO₂/Al в зависимости от длительности контакта с электролитом и свидетельствуют об участии алюминиевой подложки, покрытой несплошным слоем диоксида марганца, в электродном процессе последнего.

В процессе интеркаляции/деинтеркаляции в MnO₂/Al-электроде на циклических вольтамперограммах в электролите ПК, ДМЭ, 1М LiClO₄ наблюдаются две редокс-пары: 2,65-3,30 В и 3,30-3,60 В (рис. 5, кривая 1). Максимальная активность редокс-реакции MnO₂/Al с литием при интеркаляции достигается при потенциале 2,60 В. Величина пика разрядного тока в первом цикле при 2,60 В составляет 10 мкА/см² (рис. 5). Пик тока в анодном процессе приходится на 3,35 В. При потенциале 3,45–3,50 В ток начинает вновь нарастать в связи с началом сопряженных окислительных процессов, и появляется второй размытый максимум тока вблизи 3,60 В, которому соответствует катодный максимум тока при 3,30 В. Большая разница между потенциалами пиков тока в катодном и анодном процессах, неравенство пиков катодного и анодного токов, широкие размытые пики – все это является следствием сопряженности отдельных стадий электродного процесса (в особенности в деинтеркаляции), значительности IR-составляющей в активном электродном материале. Во втором цикле электрод MnO₂/Al теряет в разрядной емкости по сравнению с таковой в первом цикле около 20% (рис. 5, кривая 2).

Рис. 5. Вольтамперограмма электрода MnO_2/Al в редоксреакции с литием в электролите ПК, ДМЭ, 1M LiClO₄: 1 – в первом цикле; 2 – во втором цикле. Масса $MnO_2 - 0,187 \text{ мг/см}^2$. Скорость развертки потенциала – $1 \cdot 10^4 \text{ B/c}$.

Результаты циклирования MnO₂/Al-электрода в электролите ЭК, ДМК, 1M LiClO₄ подобны представленным в электролите ПК, ДМЭ, 1M LiClO₄. Разрядная емкость в этом случае в 50-м цикле равняется 100–120 мАч/г. На циклических вольтамперограммах наблюдается незначительная разница в окне потенциалов устойчивости электролитов ПК, ДМЭ, 1M LiClO₄ – 2,0–4,1 В и ЭК, ДМК, 1M LiClO₄ – 2,0–4,2 В.

Композитные тонкослойные MnO₂, MVHT/Al-электроды

В исследованиях тонкослойных композитных MnO₂, МУНТ/АІ-электродов по методу циклической вольтамперометрии, так же как в случае с MnO₂/Al-электродами, получены свидетельства двухстадийности электродного процесса. В первом разрядном процессе в электролите ПК, ДМЭ, 1M LiClO₄ пик тока при потенциале 2,68 В составляет 232 мкА/см², что превышает пиковый ток электрода без МУНТ в 20 раз. Анодный пик тока соответствует потенциалу 3,2 В. Вблизи потенциала 3,45–3,50 В в зарядном процессе MnO₂, МУНТ/АІ-электрода появляется новая стадия. При конечном зарядном потенциале 3,7 В композитный электрод еще недостаточно заряжен, и в последующем разряде емкость снижается по сравнению с первым разрядом на 21%. Расширение пределов потенциала при циклировании в анодной области позволяет поднять разрядную емкость. На циклограмме рис. 6 наглядно видно развитие новой стадии анодного процесса в области 3,50–3,90 В в электролите ЭК, ДМК, 1М LiClO₄. С ней сопряжено появление в катодной области нового пика тока при потенциале 3,25 В.

Рис. 6. Циклическая вольтамперограмма тонкослойных композитных MnO₂, MУHT/Al-электродов в редокс-реакции с литием в электролите ЭК, ДМК, 1M LiClO₄ в третьем цикле. $\upsilon = 1 \cdot 10^{-4}$ B/c. Масса композита – 0,7 мг/см².

Рис. 7. Изменение тока во времени в интеркаляции (а) /деинтеркаляции (б, в) композитных электродов MnO₂, MУHT/Al в электролите ЭК, ДМК, 1M LiClO₄. $\upsilon = 10^{-4}$ B/c. Площадь, ограниченная: кривой *a* – разрядная емкость 1-й и 2-й стадий катодного процесса, кривыми *б*, *в* – зарядная емкость 1-й и 2-й стадий анодного процесса.

Сделана оценка вклада этой стадии в электродный процесс по методу интегрирования циклической вольтамперограммы (рис. 7), использованному нами ранее [20]. Весь катодный процесс в области потенциалов 3,9–2,0 В условно можно разделить на две стадии (см. рис. 6, 7а). Площадь, ограниченная катодной кривой, представляет общую разрядную емкость электрода. Вклад катодной стадии 1 приравнивается величине 18,5% от суммарной катодной емкости, остальные 81,5% вносит стадия 2 – интеркаляция ионов лития в MnO₂. Для получения более подробных сведений о стадиях катодного процесса необходимы дальнейшие структурные исследования электродного материала.

Аналогично стадии анодного процесса 1, 2 (рис. 6) получили оценку при анализе кривых на рис. 76,в. Стадия 1 на рис. 76 характеризует основной анодный процесс деинтеркаляции лития из MnO_2 . Стадию 2 на рис. 7в можно рассматривать как суммарный процесс продолжающегося заряжения активного материала композитного электрода на фоне других окислительных процессов. Зарядная емкость стадии 2 составляет 22% от суммарного анодного процесса. Ей соответствует обратимая стадия 1 в процессе интеркаляции лития в композитный электрод (рис. 7а).

Коэффициент химической диффузии ионов лития при интеркаляции в тонкослойном β/γ-MnO₂/Al-электроде в зависимости от природы электролита

Величина пика тока вольтамперометрических кривых в процессе интеркаляции / деинтеркаляции в условиях обратимой кинетики и равномерного распределения интеркалированных частиц по толщине материала зависит линейно от скорости развертки потенциала в соответствии с теоретическими положениями [21] (1):

$$I_{p} = \frac{F \cdot Q_{\max} \cdot \upsilon}{RT(g+4)},\tag{1}$$

где I_p – ток пика циклической вольтамперограммы, А/см²; Q_{max} – максимальный кулоновский заряд, Кл; v – скорость развертки потенциала, В/с; g – параметр взаимодействия интеркалированных частиц.

Следовательно, отношение I_p/v , равное в этом случае максимальной интеркаляционной емкости электродного материала, не должно зависеть от скорости развертки потенциала.

На основании циклических вольтамперограмм рис. 8 получен рис. 9, согласно которому в интервале низких скоростей значение максимальной емкости, численно равной I_p/v , уменьшается с ростом скорости развертки потенциала.

Это означает, что процесс неравновесный и уравнение (1) не соблюдается. Наряду с этим видно, что практическая независимость потенциалов пика от скорости развертки потенциала в интервале 20–50 мкВ/с указывает на преобладание диффузионных затруднений в твердой фазе (рис. 10).

Линейная зависимость пиковых значений разрядного тока от квадратичной скорости развертки потенциала I_p - $v^{1/2}$ говорит о диффузионных ограничениях интеркаляционного процесса в исследуемом MnO₂, МУНТ/АІ-электроде.

Рис. 8. Вольтамперограммы MnO₂, MУHT/Al-электрода в редокс-реакции с литием в зависимости от скорости развертки потенциала, B/c·10⁻⁴: 1 – 0,75; 2 – 3,00; 3 – 5,00. Электролит – ЭК, ДМК, 1M LiClO₄.

Рис. 9. Зависимость I_p/v от скорости развертки потенциала (-log v).

В этом случае пик тока можно описать уравнением [22]:

$$D_{Li} = \frac{(\text{tg}\alpha)^2}{0,446 \cdot n \cdot F^2 \cdot S^2 \cdot F / RT \cdot (c_0)^2},$$
 (2)

где I_p – пик тока, А/см²; T – абсолютная температура, К; n – число электронов, приходящихся на 1 Li (n = 1); tg $\alpha = I_p / \sqrt{\upsilon}$ A $(B/c)^{-1/2}$; υ – скорость развертки потенциала, B/c; c_0 – объемная концентрация диффундирующих ионов Li(x) в активном материале, моль/см³; $c_0 = d/M$, d – плотность активного материала, г/см³; M – молекулярная масса активного материала Li_xMnO₂, г/моль; S – площадь поверхности электрода, см²; F – постоянная Фарадея (96480 Кл·моль⁻¹); R – газовая постоянная (8,31 Дж·моль⁻¹·град⁻¹).

Рис. 10. Зависимость потенциала в пике тока от скорости развертки потенциала (-log v).

Рис. 11. Микрофотографии поверхности композитного намазного MnO₂, МУНТ, Ф4/18Н12Х9Т-электрода в СЭМ.

Уравнение (2) выведено для условий Нернстовской зависимости равновесного потенциала от степени интеркаляции и постоянства c_0 . Эти условия не соблюдаются в процессах интеркаляции [23], однако уравнение (2) широко и успешно используется для сравнительной оценки коэффициента химической диффузии ионов лития в электродах включения [24, 25]. В соответствии с математической моделью интеркаляции лития в частице электродного материала показано, что пиковый ток при интеркаляции пропорционален скорости развертки потенциала $v^{0,48}$, подобно зависимости пика тока от $v^{0,50}$ редокс-системы в водном растворе [24].

На основе уравнения (2) нами установлена средняя величина эффективного коэффициента

химической диффузии иона лития $D_{Li \ catod}$ для интеркаляции ионов лития в композитных MnO_2 , MУНТ/Al-электродах в электролите ЭК, ДМК, 1M LiClO₄ (0,9·10⁻¹² cm²/c). Это близко совпадает со значением эффективного коэффициента, определенного нами при скорости развертки потенциала 1·10⁻⁴ B/c (1,3·10⁻¹² cm²/c) в электролите ПК, ДМЭ, 1M LiClO₄ для тонкослойного композитного MnO₂, MУНТ/Al-электрода. В зарядном процессе эффективный коэффициент $D_{Li \ anod} = 0,41\cdot10^{-12} \text{ cm}^2 \cdot \text{c}^{-1}$.

Композитные объемные намазные электроды MnO₂, MУНТ, Ф4/18Н12Х9Т

Макроструктура поверхности композитных намазных электродов (рис. 11) отличается от та-

Рис. 12. Электрохимические характеристики объемных намазных электродов MnO₂, MУHT, Φ 4/18H12X9T в макетном литиевом аккумуляторе в (1–10)-м циклах: (а) – разрядно-зарядные кривые; (б) – разрядная емкость в зависимости от номера цикла: 1 – заряд; 2 – разряд, $i_{\text{разр}} = i_{\text{заряд}} = 0,1 \text{ мA/cm}^2$; (в) – разрядная емкость в зависимости от плотности тока, $m = 27 \text{ мг/cm}^2$. Электролит ПК, ДМЭ, 1М LiClO₄. $E_{\text{заряд}}^{\text{кон}}$, B: (а) – 3,6 (в циклах 1–5); (б) – 4,1 (в циклах 6–10).

Рис. 13. Разрядно-зарядные кривые объемных намазных электродов MnO₂, MVHT, $\Phi 4/18H12X9T$ в макетном литиевом аккумуляторе в (1–10)-м циклах. m = 17 мг/см², $i_{3аряд} = 0,1$ мА/см², электролит ЭК, ДМК, 1М LiClO₄. $i_{pазp}$, мкА/см²: 100 – циклы 2, 3; 200 – цикл 4; 400 – цикл 10. Цифры у кривых – номера циклов.

ковой тонкослойных электродов, полученных методом механического втирания диоксида марганца. В объеме электрода распределены частицы диоксида марганца микрометрового размера сферической формы порядка 10–20 мкм и ниже (рис. 11а). Частицы покрыты углеродными нанотрубками (рис. 11б,в).

Разрядная емкость композитного намазного MnO₂, МУНТ, Ф4/18Н12Х9Т-электродов в макетном литиевом аккумуляторе с электролитом ПК, ДМЭ, 1М LiClO₄ в первом цикле достигает (250–280) мАч/г, обратимая – (237–247) мАч/г при плотности тока 0,1–0,6 мА/см² на протяжении 50 циклов (рис. 12а,б). При высокой разрядной скорости (300 мА/г) емкость остается довольно высокой (200 мАч/г, рис. 12в). Благодаря наличию МУНТ повышается разрядное напряжение в композите по сравнению со средним разрядным напряжением электрода MnO₂/Al. Величина разрядной емкости возрастает с ростом зарядного напряжения (рис. 12а,б).

Высокие удельные разрядные характеристики наблюдаются также в макетном аккумуляторе MnO₂, МУНТ, Ф4/18Н12Х9Т/ЭК, ДМК, 1M LiClO₄/Li (рис. 13). Его разрядная емкость в первом цикле составляет 275 мАч/г, обратимая емкость находится в ряду 176–195 мАч/г при разряде током 0,1–0,4 мА/см².

До настоящего времени не удавалось получить столь высокую разрядную емкость и скоростные разрядные характеристики диоксида β/γ -MnO₂, которые достигнуты с помощью МУНТ в данной работе. Сопоставление разрядных характеристик β/γ -MnO₂-электродов в композиции с МУНТ и аналогов в композиции с графитом марки ЭУЗ-М и ацетиленовой сажей (см. таблицу) показывает бесспорное преимущество МУНТ-содержащего композита и целесообразность развития исследований диоксида марганца в сочетании с углеродными нанотрубками.

Сравнительные характеристики электродов β/γ -MnO₂, MУHT, Φ 4/Al и β/γ -MnO₂, ЭУЗ-М, ацетиленовая сажа, Φ 4/Al

Композит	I _{pasp} ,	N⁰	$Q_{ m pasp}$,
	мА/г	цикла	мАч/г
β/γ - MnO ₂ , ЭУЗ-М,	80	15	155–175
ацетиленовая			
сажа, Ф4/Аl			
β/γ -MnO ₂ ,	300	50	200
МУНТ, Ф4/А1			

DII	D	\sim	TT T 1
вы	В	()	лы
		\sim	

В исследованиях химически синтезированного диоксида марганца β/γ -MnO₂, нанесенного субмикронным слоем на электронно-проводящую основу (Al) без углеродной добавки, показана способность к длительному стабильному циклированию в макетном литиевом аккумуляторе с электролитами ПК, ДМЭ, 1М LiClO₄ и ЭК, ДМК, 1М LiClO₄ в интервале 2,0–4,1 В с отдачей 110-120 мАч/г. Это свидетельствует о стабильности структуры β/γ -MnO₂ при циклировании и служит показателем потенциальных возможностей β/γ -MnO₂ в создании реального литиевого аккумулятора. Значительное падение напряжения на контактном омическом сопротивлении между частицами β/γ -MnO₂ не позволяет получить высокую разрядную емкость макетного аккумулятора. В решении этой проблемы важнейшая роль принадлежит электронно-проводящему наполнителю в активном электродном материале, которую успешно выполняют МУНТ. Разрядная емкость объемных намазных β/γ -MnO₂, МУНТ, Ф4-электродов приближается к теоретической удельной емкости диоксида марганца в редокс-реакции с литием; повышены его скоростные разрядные характеристики, которые не достигаются в электродах-аналогах с наполнителями графитом ЭУЗ-М и ацетиленовой сажей. Разрядная емкость объемных β/γ -MnO₂, MУHT, Ф4-электродов в первом цикле может достигать 280, обратимая – 250 мАч/г в первых пятидесяти циклах. Сделана оценка значений коэффициента химической диффузии ионов лития D_{Li} в редоксреакции β/у-MnO₂ с литием, установленных по методу медленной циклической вольтамперометрии в тонкослойных композитных β/γ -MnO₂, MУHT/Al-электродах при потенциалах пиковых значений тока (порядка 10^{-12} см²/с).

ЛИТЕРАТУРА

- Banov Branimir, Momchilov Anton, Julien Christian. Positive Electrode Design for Advanced Rechargeable Lithium Batteries. *Proceedings of the International* Workshop "Portable and Emergency Energy Sources – from Materials to Systems", 16–22 Sept. 2005, Primorsko, Bulgaria.
- Johnson Christopher. Development and Utility of Manganese Oxides as Cathodes in Lithium Batteries. *J Power Sources*. 2007, 165, 559–565.
- Dose Wesley M. and Scott W. Donne. Optimizing Li/MnO₂ batteries: Relating Manganese Dioxide Properties and Electrohemical Performance. *J Power Sources.* 2013, 221, 261–265.
- Thackeray M.M., De Kock A., De Picciotto L.A. Synthesis and Characterization of γ-MnO₂ from LiMn₂O₄. J. Power Sources. 1989, 26(3–4), 355–363.
- Nardi John C. Characterization of the Li/MnO₂ Multistep Discharge. J Electrochem Soc. 1985, 132 (8), 1787–1791.
- Dose Wesley M. and Scott W. Donne. Heat Treated Electrolytic Manganese Dioxide for Li/MnO₂ Batteries: Effect of Precursor Properties. *J Electrochem Soc.* 2011, **158**(9), A1036–A1041.
- Ohzuku Tsutomu, Kitagawa Masaki and Hirai Taketsugu. Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell: I. X-Ray Diffractional Study on the Reduction of Electrolytic Manganese Dioxide. J Electrochem Soc. 1989, 136 (11), 3169–3174.
- Григорьева А.В., Кулова Т.Л., Скундин А.М., Померанцева Е.А., Гудилин Е.А., Третьяков Ю.Д. Электрохимическая интеркаляция лития в наностержни β-MnO₂. Альтернативная энергетика и экология. 2009, 2(70), 91–96.
- Li Lihong, Nan Caiyun, Lu Jun, Peng Oing and Li Yadong. α-MnO₂ Nanotubes: High Surface Area and Enhanced Lithium Battery Properties. *Chem Commun.* 2012, 48, 6945–6947.
- Arava Leela Mohana Reddy, Manikjth M. Shaijumon, Sanketh R. Gowda and Pulickel M. Ajayan. Coaxial MnO₂/Carbon Nanotube Array Electrodes for Highperformance Lithium Batteries. *Nano Letters*. 2009, 9(3), 1002–1006.
- Wang D.H., Kou R., Choi D., Yang Z.G., Nie Z.M., Li J., Saraf L.V., Hu D.H., Zhang J.G., Graff G.L., Liu J., Pope M.A., Aksay I.A. Ternary Self-assembly of Ordered Metal Oxide-graphene Nanocomposites for Electrochemical Energy Storage. *Acs Nano*. 2010, 4, 1587.
- 12. Апостолова Р.Д., Коломоец О.В., Шембель Е.М. Синтез електролітичних монофазних сульфідів Со та біметалосульфідів (Co,Ni), допіруваних вуглецевими нанотрубками, та визначення їх розрядних характеристик у макетному літієвому акумуляторі.

- 13. Патент 73062С, Украина, МПК (2006) НО1М 4/06, 4/24, 4/50. Способ получения диоксида марганца для изготовления катодов литиевых источников тока. Шембель О.М., Писный В.М., Глоба Н.И., Задерей Н.Д. (Украина), Новак П.И. (США); заявитель и патентообладатель ДПИИ «Енер1» корпорации «ЕНЕР1 БАТТЕРИ КОМПАНИ»; ДВНЗ «Укр. гос. хим.- техн. ун-т» - 3. № 2003 1212437; заявл.25.12.03; Опубл.15.05.06, Бюл. № 5.
- 14. Kovacheva D., Markovsky B., Salitra Gr., Talyosef Y., Gorova M., Levi E., Riboch M., Kim Hyeong-Jin, Aurbach Doron. Electrochemical Behaviour of Electrodes Comprising Micro- and Nano-sized Particles of LiNi_{0,5}Mn_{1,5}O₄: A Comparative Study. *Electrochim Acta*. 2006, **50**(28), 5553–5560.
- Melezhik A.V., Sementsov Yu.I., Yanchenko V.V. Synthesis of Fine Carbon Nanotubes on Coprecipitated Metal Oxide Catalysts. *Russian J Appl Chem.* 2005, **78**(6), 917–923.
- 16. Гуден Б. Электропроводность электронных полупроводников. *УФН*. 1935, **15**(6), 703–738.
- Belanger Daniel, Brouse Thierry, Long Leffry W. Manganese Oxides Battery Materials Make the Leap to Electrochemical Capacities. J Electrochem Soc Interface. 2008, 155(1), 49–52.
- Chen Liquan, van Loneren Agnes, Schoonmon Joop. Amorphous MnO₂ thin Film Cathode for Rechargeable Lithium Batteries. *Solid State Ionics*. 1994, 67, 203–208.
- Апостолова Р.Д., Шембель Е.М. О подборе конструкционного материала для источника тока на основе системы Li-SO₂. *Журнал прикл. хим.* 1993, 66(2), 293–298.
- Апостолова Р.Д., Ткаченко Ю.А., Коломоец О.В., Шембель Е.М. Тонкослойный электролитический гидроксид никеля Ni(OH)₂ в электролитическом конденсаторе. ЭОМ. 2012, 48(2), 97–103.
- Diard J.P., Le Gorrec B., Montella C. Logistic Differential Equation. A General Equation for Electrointercalation Processes. *J Electroanal Chem.* 1999, 475, 190–192.
- 22. Galus Z. Fundamentals of Electrochemical Analysis. Chichester: Ellis, Horwood, 1994. 606 c.
- Levi M.D., Salitra G., Markovsry B., Teller B., Aurbach D., Heider U., Heider L. Solid-state Electrochemical Kinetics of Li-ion Intercalation into Li_{1-x}CoO₂: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS. *J Electrochem Soc.* 1999,146(4), 1279–1289.

- Nakamura Tatguya, Sakumoto Kiyotaka, Seki Shiro, Kobayashi Yo, Tabuchi Mitsuharu, Yamada Yoshihiro. Apparent Diffusion Constant and Electrochemical Reaction in LiFe_{1-x}MnPO₄ Olivine Cathodes. *J Electrochem Soc.* 2007, **154**(12), A1118–A1123.
- Yu Denis Y.W., Fietzek Christopher, Weydanz Wolfgang, Donoue Kazunori, Inoue Takao, Kurokawa Hiroshi, Fujitani Shin. Study of LiFePO₄ by Cyclic Voltammetry. *J Electrochem Soc.* 2007, **154**(4), A253–A257.
- 26. Zhang D., Popov B.N., White R.F. Modeling Lithium Intercalation of a Single Particle under Potentiodynamic Control. *J Electrochem Soc.* 2000, **147**(3), 831–838.

Поступила 25.03.13 После доработки 17.07.13 Summary

Balastless thin-layer MnO₂/Al-electrodes without electronconducting carbon additive and those but in the combination with multi-walled carbon nanotubes (MWCNTs) MnO₂/Al-MWCNTs, as well as the bulkmodified paste electrodes MnO₂, MWCNTs, and stainless steel electrodes have been investigated in the redox reaction with lithium in a model accumulator on the base of propylene carbonate (PC), dimetoxiethane (DME), 1M LiClO₄ and of ethyl carbonate (EC), dimethyl carbonate (DMC), 1M LiClO₄ electrolytes. The window of the electrochemical stability to the anode oxidation on MnO₂ and MWCNTs electrodes in the work range of the potentials for the investigated electrolytes is equal to 2.0-4.1 and 2.0-4.2 V, respectively. Because of a high contact resistence of the particles of a thin-layer β/γ -MnO₂/Al electrode its discharge capacity cannot be over 110-120 mAh/g, but it is stable during 180 cycles. The discharge capacity of MnO₂, MWCNTs electrodes during the first cycle reaches 265-280 mAh/g, the reversible one - (185–250) mAh/g in the first 50 cycles. The role of the aluminum collector in the electrochemical transformation of MnO₂ has been considered in thin-layer MnO₂/Al electrodes obtained by the mechanical rubbing of the active component in the aluminum matrix. The assessment of the lithium chemical diffusion coefficient D_{Li} established in the redox reaction of MnO_2 with lithium (in the range of 10^{-12} cm²/s) has been made in thin-layer composite MnO2 MWNTs/Al-electrodes at the current peak values (around 10^{-12} sm²/s) by the slow cyclic voltammetry.

Keywords: MnO_2 , lithium accumulator, multi-walled carbon nanotubes, discharge capacity, lithium chemical diffusion coefficient, thin-layer electrode.