Электролитические композиты Со, Ni-биметаллосульфидов с гидрофилизированными многостенными углеродными нанотрубками в макетном литиевом аккумуляторе

Р. Д. Апостолова^а, О. В. Коломоец^а, М. О. Данилов^b, Е. М. Шембель^а

^{*a}ГВУЗ «Украинский государственный химико-технологический университет»,* np. Гагарина, 8, г. Днепропетровск, 49005, Украина, e-mail: <u>shembel@onil.dp.ua</u> ^{*b*}Институт общей и неорганической химии им. В.И. Вернадского Национальной академии наук Украины, np. Палладина, 32/34, г. Киев-142, 03680, Украина, e-mail: <u>danilovmickle@rambler.ru</u></sup>

Электролитические композиты Co, Ni-биметаллосульфидов с гидрофилизированными многостенными углеродными нанотрубками (Co, Ni-S, C) представляются более перспективными электродными материалами в редокс-реакции с литием, чем композиты сульфидов переходных металлов с графитами. Разрядная емкость Co, Ni-S, C-композитов в макетном литиевом аккумуляторе (550–725 мА·ч/г) превосходит теоретическую разрядную емкость графита (372 мА·ч/г), используемого в коммерческих литий-ионных батареях.

Ключевые слова: Со, Ni-биметаллосульфиды, гидрофилизация, многостенные углеродные нанотрубки, литиевый аккумулятор.

УДК 541.136

Литиевые и литий-ионные (ЛИ) батареи становятся все более востребованными в связи с исчерпаемостью природных энергоресурсов и ростом потребности человечества в автономных мобильных источниках электропитания. Эволюция ЛИ технологий способствовала множеству функциональных применений ЛИ батарей, основное из которых - электроснабжение портативной электронной техники. Для масштабных потребностей электротранспорта необходимы более энергоемкие, мощные, высокоскоростные и недорогие источники тока, ключевым путем развития которых является синтез новых активных наноразмерных электродных материалов. В ряду последних интерес представляют углеродные нанотрубки (УНТ). В ЛИ системах УНТ используют и исследуют в отрицательных электродах, а также в композиции с активными материалами положительных электродов.

В отрицательных электродах разрядная емкость УНТ может быть ниже (250 мА-ч/г [1]) сравниваемой (340 мА·ч/г [2]) с таковой графита или превышать его теоретическую емкость, равную 372 мА-ч/г [3]. Разрядная емкость УНТ во многом зависит от структуры последних и структурной организации в литиевой аккумуляторной системе. В многостенных углеродных нанотрубках (МУНТ), вертикально ориентированных на никелевом коллекторе в направлении ионной достигается разрядная диффузии, емкость 750 мА·ч/г при плотности тока 57 мА/г, в неупорядоченных аналогах УНТ – 158 мА·ч/г [3]. Разрядная емкость одностенных углеродных нанотрубок (ОУНТ), по данным [4], составляет 460 мА·ч/г, что соответствует стехиометрии $Li_{1,23}C_6$. К сожалению, их высокая разрядная емкость 1200 мА·ч/г, которая теряется после заряжения в первом цикле (необратимая емкость), связана с развитой поверхностью (350 см²) и характерна для большинства УНТ. Удельная емкость оценивается стехиометрией LiC_6 для закрытых ОУНТ, LiC_3 – для открытых [5].

УНТ в составе композитных положительных электродов улучшают многие свойства активных электродных материалов: LiFePO₄ [6], LiCoO₂ [7], V₂O₅ [8]. Повышаются их электропроводность, мезопористость, скоростные характеристики, эффективность циклирования.

Удивительная способность УНТ повышать механическое сцепление частиц активного электродного материала [6] может быть полезной при необходимости усилить адгезионную прочность электродных материалов. В частности, в этом нуждаются электролитические тонкослойные сульфиды переходных металлов, которые при длительном циклировании в литиевом аккумуляторе теряют разрядную емкость из-за ослабления адгезии к подложке [9]. Углеродные материалы из ряда графитов, электролитически соосажденные с металлосульфидами, повышают адгезионную прочность последних и значительно улучшают их электрохимические характеристики [10, 11]. В продолжение этих исследований в данной работе для стабилизации электрохимических характеристик тонкослойных электролитических Со, Ni-биметаллосульфидов в редокс-

[©] Апостолова Р.Д., Коломоец О.В., Данилов М.О., Шембель Е.М., Электронная обработка материалов, 2014, 50(1), 17-24.

реакции с литием апробировали углеродный материал (УНТ_г) – модифицированные окислением углеродные нанотрубки. Тем самым был пополнен ряд углеродных материалов, эффективно влияющих на работоспособность электролитических Ме-сульфидов в литиевых аккумуляторных системах.

МЕТОДИКА ЭКСПЕРИМЕНТА

В работе исследовали многостенные углеродные нанотрубки, синтезированные каталитическим пиролизом этилена [12]. Продукт представляет собой черный порошок с насыпной плотностью 25–30 г/дм³. Внешний диаметр нанотрубок составляет около 10–30 нм, удельная поверхность 230 м²/г. Микрофотографии УНТ получены с помощью электронного микроскопа JEM-100 CXII.

Бинарные Со, Ni-сульфиды (Со, Ni-S) и их композиты с УНТ (Со, Ni-S, С) массой 1,0–1,5 мг/см² получали на нержавеющей стали (1х1 см) марки SS (316 L) 5-050 Ап компании Dexmet corporation из водных растворов сульфатов Co²⁺, Ni²⁺ в присутствии тиосульфата натрия, г/л: MeSO₄·7H₂O – 2,5; Na₂S₂O₃·5H₂O – 1,5; Co²⁺:Ni²⁺ = 1:1. Для синтеза композитов в электролит объемом 200 см³ вводили дополнительно 0,5 г/л УНТ. Осаждение вели при $T = 20-22^{\circ}$ С с перемешиванием электролита (180 об./мин) при катодной поляризации ($i_k = 1,0-1,5$ мА/см²).

Полученные на подложке компактные осадки сушили при 180, 300°С (7–10 ч).

Гидрофобные УНТ предварительно гидрофилизировали. Из множества способов гидрофилизации углеродных материалов [13] выбраны три способа окисления УНТ:

1) кипячение (2–5 ч) в дистиллированной воде;

2) обработка (2–5 ч) в растворе H₂SO₄ (80%);

3) анодная обработка (5–7 ч) в растворе H_2SO_4 (80%).

Анодную обработку осуществляли в стеклянном сосуде емкостью 200 см³, используя кассету с прижимным устройством, в которой тонкий слой УНТ в пористом полипропиленовом чехле прижимали к пластине терморасширенного графита и поляризовали его анодно с титановым противоэлектродом в течение 5–7 ч при потенциале 1,4–1,6 В относительно Ag/AgCl-электрода.

Электрохимические характеристики исследуемых образцов УНТ и композитов Со, Ni-S, С определяли в макетных литиевых аккумуляторах в габаритах 2325 и в 3-электродной ячейке с Li-противоэлектродом и Li/Li⁺-электродом сравнения на испытательном стенде с программным обеспечением. Противоэлектродом служила пластина из лития (1,0х1, 0х0,2 см). Макеты и ячейки заполняли электролитом: этиленкарбонат (ЭК), диметилкарбонат (ДМК), Merck в соотношении 1:1 мас., 1М LiClO₄ (йодобром). Содержание воды в приготовленных апротонных электролитах не превышает 0,006% по методу К. Фишера.

Разрядно-зарядные характеристики исходных УНТ_о и гидрофилизированных УНТ_г в реакции с литием были определены в намазных электродах с активной массой 3-5 мг/см² на сетке из нержавеющей стали 18Н12Х9Т. В состав активной массы вводили 10% фторпластового связующего Ф4. Сборку макетов и ячеек проводили в перчаточном боксе в атмосфере сухого аргона.

Электрохимические характеристики гидрофилизированных УНТ_г сравнивали с таковыми исходных УНТ_о. Разрядно-зарядные характеристики (Co, Ni-S, C)-электродов анализировали в зависимости от способа графитизации УНТ_о.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

О включении УНТ в электролитические (Co, Ni-S, C)-электроды в процессе синтеза судили по разрядно-зарядным кривым редокс-реакции (Co, Ni-S, C) с литием, идентифицируя область интеркаляции лития в УНТ. Предварительно были определены разрядно-зарядные характеристики электрохимического взаимодействия УНТ с литием.

Разрядно-зарядные характеристики УНТ

Исходные многостенные углеродные нанотрубки УНТ_о представляют собой образования с полым каналом, вокруг которого видны слои роста углерода (рис. 1). Среди УНТ_о встречаются открытые и закрытые образцы.

Рис. 1. Микрофотография многостенной углеродной нанотрубки.

Немодифицированные УНТо

Разрядная емкость УНТ_о в алкилкарбонатном электролите в первом цикле находится в ряду

Рис. 2. Кривые дифференциальной интеркаляционной емкости в зависимости от потенциала. УHT_{o} (а) и УHT_{r} (б), модифицированных кипячением в дистиллированной воде, $i_{\text{разр}}$ (мкА/см²): 1 – 50; 2 – 100.

значений 700-2500 мА·ч/г. Ток в первом разрядном процессе расходуется преимущественно на образование поверхностной пленки со свойствами твердого электролита (SEI) в процессе восстановления анионов литиевой соли и алкилкарбонатных растворителей электролита. На протяжении первых 5-10 циклов происходят трансформация и стабилизация поверхностной защитной пленки. В дальнейших циклах разрядная емкость УНТ_о держится на уровне 90–160 мА·ч/г. В электродном разрядном процессе УНТ_о в интервале 2,80-0,01 В обнаружены стадии, относящиеся к процессам: 1) образования поверхностных пленок в интервале 1,6-0,6 и вблизи 0,3 В, характерного для электродных материалов в алкилкарбонатных электролитах [14]; 2) интеркаляции лития В **YHT**_o в области потенциалов 0,25-0,01 В. Идентифицировано несколько стадий включения/экстракции (интеркаляции/деинтеркаляции) лития в УНТ_о/из УНТ_о, потенциалы редокс-пар которых равны 0,21/0,23; 0,19/0,20; 0,14/016; 0,10/0,12 В. Они подобны определенным в графите [10, 11]. На рис. 2а показаны кривые дифференциальной интеркаляционной емкости dQ/dE в зависимости от потенциала E, полученные из гальваностатических разрядных кривых *Q-Е* при интеркаляции лития в УНТ₀. Эти кривые являются аналогами вольт-амперных кривых и помогают идентифицировать стадийные переходы в электродном процессе. Стадийные переходы в УНТ_о обнаруживаются при низких скоростях процессов интеркаляции/деинтеркаляции лития, как в других исследованиях УНТ [1].

Гидрофилизированные УНТ

УНТ_г, модифицированные кипячением в дистиллированной воде, в первом разряде отдают 1780–1850 мА·ч/г, обеспечивая в 10-м цикле емкость 70 мА·ч/г в области потенциалов интеркаляции ионов лития (рис. 2б). При плотности разрядного тока 50 мкА/см² не четко выражены стадийные переходы при потенциалах 022; 0,15 и

0,09 В (кривая 1 на рис. 2б), при плотности тока 100 мкА/см² стадийные переходы не проявляют-ся (кривая 2 на рис. 2б).

Обработка (2 ч) УНТ_о в растворе H₂SO₄ (80%) улучшает их разрядно-зарядные характеристики (рис. 3). Стабильная емкость возрастает до 180–200 мА·ч/г. Пленкообразование на УНТ_г завершается практически на первом цикле (рис. 3а, сравнение кривых *1* и *2*, *3*). Стадии интеркаляции на 10-м цикле наблюдаются при разрядном токе 15 мкА/см² (рис. 3б, кривая *1*) и не проявляются при (*i*)_{разр} = 50 и 100 мкА/см² (кривые *2*, *3* рис. 3б). Потенциалы пленкообразования в первом цикле наглядно представлены на кривой *1* (рис. 3в).

Лучшие результаты дала модификация поверхности УНТ_о по методу анодной обработки (7 ч) в растворе H_2SO_4 (80%) при потенциале 1,5 В относительно Ag/AgCl-электрода. При электрохимическом окислении углеродного материала происходит перераспределение пор по размерам. Электрохимические характеристики гидрофилизированных этим способом УНТ_г показаны на рис. 4. В первом разряде емкость приближается к 1000 мА·ч/г, на втором цикле она равняется 330 мА·ч/г и стабилизируется на десятом на уровне 200 мА·ч/г (рис. 4а).

Максимальная активность пленкообразования на поверхности УНТ_г приходится на потенциалы 1,20; 0,85; 0,30 В (рис. 4б). На 10-м цикле осуществляется только процесс интеркаляция/деинтеркаляция лития в УНТ_г (рис. 4в), формирование поверхностной пленки завершено. Стадийность этого процесса отражает рис. 4г.

Разрядно-зарядные характеристики (Co, Ni-S, C)-электродов (Co, Ni-S, C)-композиты с УНТ_г, гидрофилизированными в кипящей H₂O

Разрядно-зарядные характеристики Co, Ni-Sэлектродов (рис. 5) улучшаются, когда в их состав электролитически вводятся УHT_{r} , гидрофилизированные в кипящей H_2O .

Рис. 3. Электрохимические характеристики УНТ_г, обработанных (2 ч) в H_2SO_4 (80%), в макетном литиевом аккумуляторе: (а) – разрядно-зарядные кривые в 1-, 2-, 10-м циклах; $i_{pa3p} = 50 \text{ мкA/cm}^2$, $i_{заряд} = 30 \text{ мкA/cm}^2$; (б) – кривые дифференциальной интеркаляционной/деинтеркаляционной емкости, полученные из рис. За, в зависимости от разрядного тока *i* (мкА/см²): 1 – 15; 2 – 50; 3 – 100; (в) – кривые дифференциальной интеркаляционной/деинтеркаляционной емкости на 1 и 10-м циклах.

Рис. 4. Электрохимические характеристики УНТ_г, анодно обработанных (7 ч) в H₂SO₄ (80%) в макетном литиевом аккумуляторе: (а) – разрядно-зарядные кривые в 1-, 2-, 10-м циклах; $i_{\text{разр}} = 50 \text{ мкA/см}^2$, $i_{\text{заряд}} = 30 \text{ мкA/см}^2$; (б) – кривые дифференциальной интеркаляционной/деинтеркаляционной емкости, полученные из рис. 4а; (в) – кривые дифференциальной интеркаляционной емкости на 10-м цикле, полученные из рис. 4а; кривая *10*; (г) – кривая дифференциальной интеркаляционной емкости на 10-м цикле, полученные из рис. 4а; кривая *10*; (г) – кривая дифференциальной интеркаляционной емкости на 10-м цикле, полученные из рис. 4а; кривая *10*; (г) – кривая дифференциальной интеркаляционной емкости на 10-м цикле, полученная из рис. 4а; кривая *10*.

Рис. 5. Разрядно-зарядные кривые Co, Ni-S-электрода в макетном литиевом аккумуляторе в 1–6 циклах. $i_{\text{pasp}} = 50 \text{ мкA/cm}^2$, $i_{\text{заряд}} = 30 \text{ мкA/cm}^2$.

Рис. 6. Электрохимические характеристики Co, Ni-S-электрода с УНТ_г, обработанными кипячением в H₂O (2 ч), в макетном литиевом аккумуляторе в 1-, 2-, 10-м циклах: (а) – разрядно-зарядные кривые: $i_{pasp} = 50 \text{ мкA/cm}^2$, $i_{sapяд} = 30 \text{ мкA/cm}^2$; (б) – изменение разрядной емкости с числом циклов; (в) – кривые дифференциальной интеркаляционной/деинтеркаляционной емкости, полученные по кривым рис. 6а; (г) – кривые дифференциальной интеркаляционной емкости в УНТ_г на 10-м цикле (кривые 1 ($i_{pasp} = 50 \text{ мкA/cm}^2$), 2 ($i_{pasp} = 13 \text{ мкA/cm}^2$)).

Об этом свидетельствуют кривые рис. 6. Они показывают снижение необратимой емкости (Со, Ni-S, C)-электродов до 25–28% (рис. 6а), стабилизацию разрядного процесса при циклировании (рис. 6б), незначительное изменение отдельных стадий электродного процесса на протяжении 10 циклов (рис. 6в). Подтверждением включения УНТ_г в Со, Ni-S-электрод являются кривые дифференциальной интеркаляционной емкости 1, 2 (рис. 6г), на которых обнаружены стадии включения УНТ (более четкие при низкой плотности тока 15 мкA/см² – при потенциалах 0,21; 0,14;

Рис. 7. Циклическая вольтамперограмма Со, Ni-S-C-электрода в редокс-реакции с литием. Скорость развертки потенциала – 3·10⁻⁵ B/c.

Рис. 8. Электрохимические характеристики (Co, Ni-S, C)-композита с УНТ_г, гидрофилизированными (5 ч) в растворе H_2SO_4 80%: (a) – стадийные переходы в области интеркаляции лития в УНТ_г; (б) – разрядно-зарядные кривые, $i_{pa3p} = 50 \text{ мкA/cm}^2$, $i_{3аряд} = 30 \text{ мкA/cm}$.

Рис. 9. Электрохимические характеристики (Co, Ni-S, C)-композита с УНТ_г, гидрофилизированными анодной обработкой (5 ч) в растворе $H_2SO_4 80\%$: (a) – разрядно-зарядные кривые, $i_{pa3p} = 50$ мкA/см², $i_{заряд} = 30$ мкA/см²; (б) – кривые дифференциальной интеркаляционной емкости, полученные по рис. 9а; (в) – изменение разрядной емкости в зависимости от плотности тока; (г) – стадийные переходы в области интеркаляции лития в УНТ_г.

0,10 В). Они отсутствуют на аналогичной кривой *3* дифференциальной разрядной емкости Со, Ni-S-электрода. На ней имеется лишь стадийный электродный переход при 0,25 В, наблюдаемый также в Со, Ni-S-C-композите и являющийся проявлением образования поверхностной пленки. Обратимая емкость Со, Ni-S-C-композита в 1–10-х циклах составляет не менее 600 мА·ч/г. Разрядно-зарядный процесс в композите стабилизируется на 2-м цикле.

Фазообразование в УНТ_г в составе композитного Co, Ni-S-C-электрода определено также по методу медленной циклической вольтамперометрии. На вольтамперограмме, снятой в области потенциалов 0,18–0,03 В (рис. 7), выявлены стадийные переходы при потенциалах 0,17; 0,13: 0,06 В в интеркаляционном процессе и при 0,08; 0,15 В – в деинтеркаляционном. При деинтеркаляции они труднее проявляются.

(Co, Ni-S, C)-композиты с УНТ_г, гидрофилизированными в растворе H₂SO₄

Электрохимические характеристики (Co, Ni-S, C)-композита с VHT_r , гидрофилизированными (5 ч) в растворе H_2SO_4 80%, показанные на рис. 8, подтверждают благотворное влияние VHT_r , включенных электролитически в состав активного электродного материала (рис. 8а), поверхность которого химически окислена в растворе минеральной кислоты, на стабильность циклирования композитов (рис. 8б), на обратимое преобразование в редокс-реакции с литием. Необратимая емкость не превышает 15% исходной величины 1-го цикла.

(Co, Ni-S, C)-композиты с УНТ_г, гидрофилизированными анодной обработкой в растворе H₂SO₄

Разрядная емкость (Co, Ni-S, C)-композитов в алкилкарбонатном электролите с УНТ_г, гидрофилизированными анодной обработкой в растворе H₂SO₄, в 1-м цикле превышает 600 мА·ч/г, необратимая емкость во 2–10-м циклах составляет 15% (рис. 9а,б). Изменение разрядной емкости с изменением плотности тока представлено на рис. 9в, фазовые переходы в области интеркаляции лития в УНТ_г в составе композита – на рис. 9г. В ряду значений интеркаляционного тока 15–100 мА/г разрядная емкость изменяется в пределах 675–500 мА·ч/г. При интеркаляции фазообразование в УНТ_г в составе (Co, Ni-S, C)композита осуществляется при потенциалах 0,22; 0,17; 0,15; 0,11; 0,08 В.

Итак, обработка поверхности УНТ_о, проводимая по методу химического и электрохимического окисления с образованием кислородсодержащих функциональных поверхностных групп, способствует повышению обратимой интеркаляционной емкости УНТ_г в редокс-реакции с литием от значений (90–160) мА·ч/г до превышающих 200 мА·ч/г в алкилкарбонатном электролите. Электролитическое соосаждение биметаллосульфида (Со, Ni) с УНТ_г эффективно воздействует на электрохимические характеристики продукта синтеза Со, Ni-S, С-композита, являющегося смесью сульфидов Со₉S₈ и NiS, допированной УНТ_г. Обратимая емкость композита (550–600 мА·ч/г) значительно превосходит таковую чистых (без УНТ_г) электролитических биметаллосульфидов (Со, Ni, S).

При разряде Co, Ni-S, C-композита в литиевом макетном аккумуляторе электродный процесс в области 2,80–0,01 В осуществляется в три последовательные стадии: 1) редокс-реакция Co, Ni-S с литием (2,8–1,1 В); 2) образование поверхностной пленки в процессе восстановления электролита (1,10–0,25 В); возможна электроадсорбция Li⁺ на УНТ_г с участием поверхностных функциональных групп; 3) интеркаляция лития в УНТ_г (0,25–0,01 В) в составе композита.

Электролитические сульфиды переходных металлов MeS_x (Me = Fe, Ni, Co, Mo, биметаллосульфидные композиции) могут быть использованы в положительных электродах литиевых аккумуляторов и отрицательных электродах литийсистем. Аккумуляторная ионных система MeS_x/Li работает в области напряжения 2,8-0,9 В [9]. В предложенной нами 2-вольтовой литийионной системе (3,0-1,5 В) с положительным (LiMn₂O₄ или LiCoO₂)-электродом электролитический биметаллосульфид Ni, Co, S_x эффективно использован в отрицательных электродах [15]. Область электрохимической активности УНТ (интеркаляция/деинтеркаляция) находится в ряду 0,25-0,02 В относительно лития и лежит за пределами рабочего напряжения указанных аккумуляторных систем. Следует подчеркнуть, что наши исследования УНТ направлены на получение доказательства включения УНТ в осадок Со, Ni-S, поскольку не все углеродные материалы электролитически включаются в MeS_x. УНТ не рассматриваются как источник дополнительной разрядной емкости композита за счет интеркаляции лития в УНТ. Роль УНТ важна и состоит в повышении адгезионной способности Ni, Co, S, С-композита удерживаться на металлической подложке при циклировании в аккумуляторе. Повышение адгезии способствует снижению потери разрядной емкости Со, Ni-S, С-электрода при циклировании и повышению ресурса аккумулятора. Повышенная адгезия объясняется особенностями синтеза электролитических Месульфидов [9].

Кроме того, УНТ_г повышают электронную проводимость активного электродного материала, подобно графиту, электролитически включенному в осадок сульфида переходного металла [10, 11].

ЗАКЛЮЧЕНИЕ

Таким образом, синтезированные электролитические композиты Co, Ni-биметаллосульфидов с гидрофильными УНТ, представляются более перспективными электродными материалами в редокс-реакции с литием, чем композиты сульфидов переходных металлов с графитами [10, 11]. Разрядная емкость Со, Ni-S, Скомпозитов в литиевом макетном аккумуляторе превосходит теоретическую разрядную емкость графита, используемого в коммерческих литийионных батареях. Имеется возможность дальнейшего совершенствования разрядных характеристик композитов с УНТ_г путем оптимизации состава электролита осаждения. Кроме того, следуя литературным рекомендациям, характеристики можно улучшить, используя более короткие УНТ.

ЛИТЕРАТУРА

- Odani A., Nimberger A., Markovsry B., Sominski E., Levi E., Kumar V.S., Motiei M., Gedanken A., Dan P., Aurbach D. Development and Testing of Nanomaterials for Rechargeable Lithium Batteries. *J Power Sources*. 2003, **119–121**, 517–521.
- Wang G.S., Jung-ho Ahn, Yao Jane, Lindsay Matthew, Liu H.K., Dou S.X. Preparation and Characterization of Carbon Nanotubes for Energy Storage. *J Power Sources*. 2003, **119–121**, 16–23.
- Welna Daniel T., Qu Liangti, Taylor Barney E., Dai Liming, Durtock Michael F. Vertically Aligned Carbon Nanotube Electrodes for Lithium-ion Batteries. *J Power Sources*. 2011, **196–121**, 1455–1460.
- Claye Agnes S., Fischer John E., Huffman Chad B., Rinzleri Andrew G., Smalley Richard E. Solid-state Electrochemistry of the Lithium Single Wall Carbon Nanotube System. *J Electrochem Soc.* 2000, 147(8), 2845–2852.
- Shimoda H., Gao B., Tang X.P., Kleihammes A., Fleming L., Wu Y., Zhou O. Lithium Intercalation into Etched Single-wall Carbon Nanotubes. *Physica*. 2002, **B 323**, 133–134.
- Xu J., Chen G., Li X. Electrochemical Performance of LiFePO₄ Cathode Nanotubes. *Mater Chem Phys.* 2009, **118**(1), 9–11.
- Sheem V.K., Lee Y.U., Lim H.S.. High-density Positive Electrodes Containing Carbon Nanotubes for Use in Li-ion Cells. *J Power Sources*. 2006, 158, 1425–1430.

- Sakamoto J.S., Dun B. Vanadium Oxide-carbon Nanotube Composite Electrodes for Use in Secondary Lithium Batteries. *J Electrochem Soc.* 2002, **149**(1), A26–A30.
- Нагирный В.М., Апостолова Р.Д., Шембель Е.М. Синтез и электрохимические характеристики электролитических металлооксидных и металлосульфидных соединений для литиевых аккумуляторов. Днепропетровск: ГВУЗ УДХТУ, 2008. 260 с.
- 10. Apostolova R.D., Kolomoets O.V., Shembel E.M. Optimization Iron Sulfides in Electrolytic Composites with Graphite for Lithium-ion Batteries. *Surf Eng Appl Elecrtochem*. 2011, **47**(5), 465–470.
- Apostolova R.D., Kolomoets O.V., Shembel E.M. Electrolytic Composites of Iron Sulfides with Graphite in a Prototype Lithium Batteries. *Russ J Appl Chem.* 2011, 84(4), 607–614.
- Мележик А.В., Семенцов Ю.И., Янченко В.В. Синтез тонких углеродных нанотрубок на соосажденных металлооксидных катализаторах. *Журнал* прикладной химии. 2005, **78**(6), 938–944.
- Земекова Л.А., Шевелева И.В. Модифицирование сорбционно-активных углеродных волокнистых материалов. *Российский химический журнал.* 2004, XLVIII(5), 53–57.
- Апостолова Р., Шембель Е., Талиосиф И., Гринблат Ю., Марковский Б., Орбах Д. Исследование электролитического сульфида кобальта Co₉S₈ как электродного материала в макетах литиевого аккумулятора. Электрохимия. 2009, 45, 330–339.
- 15. Апостолова Р.Д., Тысячный В.П., Шембель Е.М. Электролитические бинарные сульфиды Со и Ni в электродах макетных литиевых и литий-ионных низкотемпературных аккумуляторов. Электрохимия. 2010, 46(1), 105–111.

Поступила 09.01.13 После доработки 29.04.13

Summary

Electrolytic Co, Ni-bimetalsulfid composites with hydrofillizated multiwall carbon nanotubes (Co, Ni-S, C) seem to be more promising electrode materials in the redox reaction with lithium than the composites of the transition metal sulfides with graphites. Discharge capacity of Co, Ni-S, C-composites in a model lithium accumulator (550–725 mA·h/g) exceeds the theoretical graphite discharge capacity of (372 mA·h/g) used commercially in lithium-ion batteries.

Keywords: Co, Ni-bimetalsulfid, modification, multiwall carbon nanotubes, lithium accumulator.